Suppr超能文献

使用已知算子进行学习可降低最大训练误差界限。

Learning with Known Operators reduces Maximum Training Error Bounds.

作者信息

Maier Andreas K, Syben Christopher, Stimpel Bernhard, Würfl Tobias, Hoffmann Mathis, Schebesch Frank, Fu Weilin, Mill Leonid, Kling Lasse, Christiansen Silke

机构信息

Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg, Germany.

Helmholtz Zentrum Berlin für Materialien und Energie, Germany.

出版信息

Nat Mach Intell. 2019 Aug;1(8):373-380. doi: 10.1038/s42256-019-0077-5. Epub 2019 Aug 9.

Abstract

We describe an approach for incorporating prior knowledge into machine learning algorithms. We aim at applications in physics and signal processing in which we know that certain operations must be embedded into the algorithm. Any operation that allows computation of a gradient or sub-gradient towards its inputs is suited for our framework. We derive a maximal error bound for deep nets that demonstrates that inclusion of prior knowledge results in its reduction. Furthermore, we also show experimentally that known operators reduce the number of free parameters. We apply this approach to various tasks ranging from CT image reconstruction over vessel segmentation to the derivation of previously unknown imaging algorithms. As such the concept is widely applicable for many researchers in physics, imaging, and signal processing. We assume that our analysis will support further investigation of known operators in other fields of physics, imaging, and signal processing.

摘要

我们描述了一种将先验知识纳入机器学习算法的方法。我们的目标是应用于物理和信号处理领域,在这些领域中我们知道某些操作必须嵌入到算法中。任何允许朝着其输入计算梯度或次梯度的操作都适用于我们的框架。我们推导了深度网络的最大误差界,表明纳入先验知识会导致误差减小。此外,我们还通过实验表明,已知算子减少了自由参数的数量。我们将这种方法应用于从CT图像重建到血管分割等各种任务,再到推导以前未知的成像算法。因此,该概念广泛适用于物理、成像和信号处理领域的许多研究人员。我们假设我们的分析将支持在物理、成像和信号处理的其他领域对已知算子进行进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验