Suppr超能文献

ROOTS:一种生成生物逼真皮质轴突的算法及其在电治疗建模中的应用。

ROOTS: An Algorithm to Generate Biologically Realistic Cortical Axons and an Application to Electroceutical Modeling.

作者信息

Bingham Clayton S, Mergenthal Adam, Bouteiller Jean-Marie C, Song Dong, Lazzi Gianluca, Berger Theodore W

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.

Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States.

出版信息

Front Comput Neurosci. 2020 Feb 21;14:13. doi: 10.3389/fncom.2020.00013. eCollection 2020.

Abstract

Advances in computation and neuronal modeling have enabled the study of entire neural tissue systems with an impressive degree of biological realism. These efforts have focused largely on modeling dendrites and somas while largely neglecting axons. The need for biologically realistic explicit axonal models is particularly clear for applications involving clinical and therapeutic electrical stimulation because axons are generally more excitable than other neuroanatomical subunits. While many modeling efforts can rely on existing repositories of reconstructed dendritic/somatic morphologies to study real cells or to estimate parameters for a generative model, such datasets for axons are scarce and incomplete. Those that do exist may still be insufficient to build accurate models because the increased geometric variability of axons demands a proportional increase in data. To address this need, a Ruled-Optimum Ordered Tree System (ROOTS) was developed that extends the capability of neuronal morphology generative methods to include highly branched cortical axon terminal arbors. Further, this study presents and explores a clear use-case for such models in the prediction of cortical tissue response to externally applied electric fields. The results presented herein comprise (i) a quantitative and qualitative analysis of the generative algorithm proposed, (ii) a comparison of generated fibers with those observed in histological studies, (iii) a study of the requisite spatial and morphological complexity of axonal arbors for accurate prediction of neuronal response to extracellular electrical stimulation, and (iv) an extracellular electrical stimulation strength-duration analysis to explore probable thresholds of excitation of the dentate perforant path under controlled conditions. ROOTS demonstrates a superior ability to capture biological realism in model fibers, allowing improved accuracy in predicting the impact that microscale structures and branching patterns have on spatiotemporal patterns of activity in the presence of extracellular electric fields.

摘要

计算和神经元建模的进展使得对整个神经组织系统进行研究成为可能,且具有令人印象深刻的生物逼真度。这些努力主要集中在对树突和胞体进行建模,而在很大程度上忽略了轴突。对于涉及临床和治疗性电刺激的应用而言,构建具有生物逼真度的显式轴突模型的需求尤为迫切,因为轴突通常比其他神经解剖亚单位更易兴奋。虽然许多建模工作可以依赖现有的重建树突/胞体形态库来研究真实细胞或估计生成模型的参数,但轴突的此类数据集却稀缺且不完整。现有的那些数据集可能仍不足以构建准确的模型,因为轴突增加的几何变异性要求数据按比例增加。为满足这一需求,开发了一种规则最优有序树系统(ROOTS),它扩展了神经元形态生成方法的能力,以纳入高度分支的皮质轴突终末分支。此外,本研究展示并探索了此类模型在预测皮质组织对外部施加电场的反应方面的一个明确用例。本文呈现的结果包括:(i)对所提出的生成算法进行定量和定性分析;(ii)将生成的纤维与组织学研究中观察到的纤维进行比较;(iii)研究轴突分支准确预测神经元对细胞外电刺激反应所需的空间和形态复杂性;(iv)进行细胞外电刺激强度-持续时间分析,以探索在受控条件下齿状穿通路径兴奋的可能阈值。ROOTS在捕获模型纤维中的生物逼真度方面表现出卓越能力,从而在存在细胞外电场的情况下,在预测微观结构和分支模式对时空活动模式的影响时提高了准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b3/7047217/f43822120c74/fncom-14-00013-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验