Suppr超能文献

自由生活个体的咬数率:来自便携式传感器的新见解。

Bite count rates in free-living individuals: new insights from a portable sensor.

作者信息

Alex Jimmy, Turner Dusty, Thomas Diana M, McDougall Andrew, Halawani Mirna W, Heymsfield Steven B, Martin Corby K, Scisco Jenna L, Salley James, Muth Eric, Hoover Adam W

机构信息

1Health and Public Affairs, University Of Central Florida, 838 Contravest Lane Winter Springs, Orlando, FL 32708 USA.

2Department of Mathematical Sciences, United States Military Academy, West Point, New York, NY 10996 USA.

出版信息

BMC Nutr. 2018 May 18;4:23. doi: 10.1186/s40795-018-0227-x. eCollection 2018.

Abstract

BACKGROUND

Conclusions regarding bite count rates and body mass index (BMI) in free-living populations have primarily relied on self-report. The objective of this exploratory study was to compare the relationship between BMI and bite counts measured by a portable sensor called the Bite Counter in free-living populations and participants eating in residence.

METHODS

Two previously conducted studies were analyzed for relationships between BMI and sensor evaluated bite count/min, and meal duration. Participants from the first study ( = 77) wore the bite counter in a free-living environment for a continuous period of 14 days. The second study ( = 214) collected bite count/min, meal duration, and total energy intake in participants who consumed one meal in a cafeteria. Linear regression was applied to examine relationships between BMI and bite count/min.

RESULTS

There was no significant correlation in the free-living participants average bite counts per second and BMI (R = 0.03,  = 0.14) and a significant negative correlation in the cafeteria participants (  = 0.04,  = 0.03) with higher bite count rates observed in lean versus obese participants. There was a significant correlation between average meal duration and BMI in the free-living participants (  = 0.08,  = 0.01). Total energy intake in the cafeteria participants was also significantly correlated to meal duration (  = 0.31,  < 0.001).

CONCLUSIONS

With additional novel applications of the Bite Counter, insights into free-living eating behavior may provide avenues for future interventions that are sustainable for long term application.

摘要

背景

关于自由生活人群的咬嚼次数率和体重指数(BMI)的结论主要依赖于自我报告。这项探索性研究的目的是比较自由生活人群以及在住所用餐的参与者中,BMI与一种名为咬嚼计数器的便携式传感器测量的咬嚼次数之间的关系。

方法

分析两项先前进行的研究,以探讨BMI与传感器评估的每分钟咬嚼次数以及用餐时长之间的关系。第一项研究的77名参与者在自由生活环境中连续佩戴咬嚼计数器14天。第二项研究的214名参与者在自助餐厅用餐时收集了每分钟咬嚼次数、用餐时长和总能量摄入。应用线性回归来检验BMI与每分钟咬嚼次数之间的关系。

结果

自由生活的参与者中,每秒平均咬嚼次数与BMI之间无显著相关性(R = 0.03,P = 0.14),而在自助餐厅参与者中存在显著负相关(P = 0.04,P = 0.03),瘦参与者的咬嚼次数率高于肥胖参与者。自由生活的参与者中,平均用餐时长与BMI之间存在显著相关性(P = 0.08,P = 0.01)。自助餐厅参与者的总能量摄入也与用餐时长显著相关(P = 0.31,P < 0.001)。

结论

随着咬嚼计数器的更多新颖应用,对自由生活饮食行为的深入了解可能为未来可持续长期应用的干预措施提供途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa5/7050775/97acd7f4253b/40795_2018_227_Fig1_HTML.jpg

相似文献

1
Bite count rates in free-living individuals: new insights from a portable sensor.
BMC Nutr. 2018 May 18;4:23. doi: 10.1186/s40795-018-0227-x. eCollection 2018.
2
Examining the utility of a bite-count-based measure of eating activity in free-living human beings.
J Acad Nutr Diet. 2014 Mar;114(3):464-469. doi: 10.1016/j.jand.2013.09.017. Epub 2013 Nov 12.
3
Effects of Bite Count Feedback from a Wearable Device and Goal Setting on Consumption in Young Adults.
J Acad Nutr Diet. 2016 Nov;116(11):1785-1793. doi: 10.1016/j.jand.2016.05.004. Epub 2016 Jun 23.
4
A comparison of bite size and BMI in a cafeteria setting.
Physiol Behav. 2017 Nov 1;181:38-42. doi: 10.1016/j.physbeh.2017.09.002. Epub 2017 Sep 8.
5
Comparison between Human and Bite-Based Methods of Estimating Caloric Intake.
J Acad Nutr Diet. 2016 Oct;116(10):1568-1577. doi: 10.1016/j.jand.2016.03.007. Epub 2016 Apr 14.
6
Caloric intake and eating behavior in infants and toddlers with cystic fibrosis.
Pediatrics. 2002 May;109(5):E75-5. doi: 10.1542/peds.109.5.e75.
7
Slowing bite-rate reduces energy intake: an application of the bite counter device.
J Am Diet Assoc. 2011 Aug;111(8):1231-5. doi: 10.1016/j.jada.2011.05.005.
9
Between- and Within-Subjects Predictors of the Kilocalorie Content of Bites of Food.
J Acad Nutr Diet. 2019 Jul;119(7):1109-1117. doi: 10.1016/j.jand.2018.12.009. Epub 2019 Feb 16.

引用本文的文献

1
Wearable Orofacial Technology and Orthodontics.
Dent J (Basel). 2023 Jan 10;11(1):24. doi: 10.3390/dj11010024.
2
Machine learning modeling practices to support the principles of AI and ethics in nutrition research.
Nutr Diabetes. 2022 Dec 2;12(1):48. doi: 10.1038/s41387-022-00226-y.
3
Predicting energy intake in adults who are dieting and exercising.
Int J Obes (Lond). 2022 Dec;46(12):2095-2101. doi: 10.1038/s41366-022-01205-0. Epub 2022 Aug 20.

本文引用的文献

1
A new universal dynamic model to describe eating rate and cumulative intake curves.
Am J Clin Nutr. 2017 Feb;105(2):323-331. doi: 10.3945/ajcn.115.127811. Epub 2017 Jan 11.
2
Comparison between Human and Bite-Based Methods of Estimating Caloric Intake.
J Acad Nutr Diet. 2016 Oct;116(10):1568-1577. doi: 10.1016/j.jand.2016.03.007. Epub 2016 Apr 14.
4
A comparison of chewing rate between overweight and normal BMI individuals.
Physiol Behav. 2015 Jun 1;145:8-13. doi: 10.1016/j.physbeh.2015.03.028. Epub 2015 Mar 24.
5
Monitoring eating habits using a piezoelectric sensor-based necklace.
Comput Biol Med. 2015 Mar;58:46-55. doi: 10.1016/j.compbiomed.2015.01.005. Epub 2015 Jan 9.
6
Examining the utility of a bite-count-based measure of eating activity in free-living human beings.
J Acad Nutr Diet. 2014 Mar;114(3):464-469. doi: 10.1016/j.jand.2013.09.017. Epub 2013 Nov 12.
7
Self-reported eating rate aligns with laboratory measured eating rate but not with free-living meals.
Appetite. 2013 Apr;63:36-41. doi: 10.1016/j.appet.2012.12.014. Epub 2012 Dec 21.
8
A new method for measuring meal intake in humans via automated wrist motion tracking.
Appl Psychophysiol Biofeedback. 2012 Sep;37(3):205-15. doi: 10.1007/s10484-012-9194-1. Epub 2012 Apr 10.
9
Stress-induced laboratory eating behavior in obese women with binge eating disorder.
Appetite. 2012 Apr;58(2):457-61. doi: 10.1016/j.appet.2011.12.007. Epub 2011 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验