Suppr超能文献

支持营养研究中人工智能和伦理原则的机器学习建模实践。

Machine learning modeling practices to support the principles of AI and ethics in nutrition research.

作者信息

Thomas Diana M, Kleinberg Samantha, Brown Andrew W, Crow Mason, Bastian Nathaniel D, Reisweber Nicholas, Lasater Robert, Kendall Thomas, Shafto Patrick, Blaine Raymond, Smith Sarah, Ruiz Daniel, Morrell Christopher, Clark Nicholas

机构信息

Department of Mathematical Sciences, United States Military Academy, West Point, NY, 10996, USA.

Department of Computer Science, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.

出版信息

Nutr Diabetes. 2022 Dec 2;12(1):48. doi: 10.1038/s41387-022-00226-y.

Abstract

BACKGROUND

Nutrition research is relying more on artificial intelligence and machine learning models to understand, diagnose, predict, and explain data. While artificial intelligence and machine learning models provide powerful modeling tools, failure to use careful and well-thought-out modeling processes can lead to misleading conclusions and concerns surrounding ethics and bias.

METHODS

Based on our experience as reviewers and journal editors in nutrition and obesity, we identified the most frequently omitted best practices from statistical modeling and how these same practices extend to machine learning models. We next addressed areas required for implementation of machine learning that are not included in commercial software packages.

RESULTS

Here, we provide a tutorial on best artificial intelligence and machine learning modeling practices that can reduce potential ethical problems with a checklist and guiding principles to aid nutrition researchers in developing, evaluating, and implementing artificial intelligence and machine learning models in nutrition research.

CONCLUSION

The quality of AI/ML modeling in nutrition research requires iterative and tailored processes to mitigate against potential ethical problems or to predict conclusions that are free of bias.

摘要

背景

营养研究越来越依赖人工智能和机器学习模型来理解、诊断、预测和解释数据。虽然人工智能和机器学习模型提供了强大的建模工具,但未能使用谨慎且经过深思熟虑的建模过程可能会导致误导性结论以及围绕伦理和偏差的问题。

方法

基于我们作为营养与肥胖领域的审稿人和期刊编辑的经验,我们确定了统计建模中最常被遗漏的最佳实践,以及这些实践如何同样适用于机器学习模型。接下来,我们讨论了商业软件包中未包含的机器学习实施所需的领域。

结果

在此,我们提供了一份关于最佳人工智能和机器学习建模实践的教程,其中包含一份清单和指导原则,可减少潜在的伦理问题,以帮助营养研究人员在营养研究中开发、评估和实施人工智能和机器学习模型。

结论

营养研究中人工智能/机器学习建模的质量需要迭代和量身定制的过程,以减轻潜在的伦理问题或预测无偏差的结论。

相似文献

5
Precision nutrition: A systematic literature review.精准营养:系统文献回顾。
Comput Biol Med. 2021 Jun;133:104365. doi: 10.1016/j.compbiomed.2021.104365. Epub 2021 Apr 7.

引用本文的文献

3
A Scoping Review of Artificial Intelligence for Precision Nutrition.人工智能在精准营养领域的范围综述。
Adv Nutr. 2025 Apr;16(4):100398. doi: 10.1016/j.advnut.2025.100398. Epub 2025 Feb 28.

本文引用的文献

4
Best practices in machine learning for chemistry.化学领域机器学习的最佳实践。
Nat Chem. 2021 Jun;13(6):505-508. doi: 10.1038/s41557-021-00716-z.
8
Best practices for artificial intelligence in life sciences research.生命科学研究中人工智能的最佳实践。
Drug Discov Today. 2021 May;26(5):1107-1110. doi: 10.1016/j.drudis.2021.01.017. Epub 2021 Jan 22.
9
Real-Time Food Intake Monitoring Using Wearable Egocnetric Camera.使用可穿戴自我中心相机进行实时食物摄入量监测。
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4191-4195. doi: 10.1109/EMBC44109.2020.9175497.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验