Xiao Yao, Zhang Xu-Dong, Zhu Yan-Fang, Wang Peng-Fei, Yin Ya-Xia, Yang Xinan, Shi Ji-Lei, Liu Jian, Li Hongliang, Guo Xiao-Dong, Zhong Ben-He, Guo Yu-Guo
School of Chemical Engineering Sichuan University Chengdu 610065 P. R. China.
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China.
Adv Sci (Weinh). 2019 Apr 29;6(13):1801908. doi: 10.1002/advs.201801908. eCollection 2019 Jul 3.
Spinel-type LiMnO cathode materials commonly suffer from manganese dissolution due to the severe interfacial side reactions especially at elevated temperature. Here, a 3D hollow fusiform LiMnO cathode material is reported with preferentially exposed stable {111} facets and seamless outer structure, which is clearly confirmed by microfocused ion beam scanning electron microscopy, high-resolution transmission electron microscopy as well as scanning transmission electron microscopy with atomic resolution. Owing to the optimal geometrical structure design and the preferentially exposed stable {111} facets, the electrode delivers excellent rate capability (107.6 mAh g at 10 C), remarkable cycling stability (83.3% capacity retention after 1000 cycles at 1 C), and outstanding high-temperature performance. Together with the analyses of electrochemical behaviors, in situ X-ray diffraction at different temperatures, and ex situ X-ray photoelectron spectra, the underlying working mechanism for suppressing manganese dissolution is clearly articulated. These findings could provide significant guidelines for precisely designing highly stable cathode materials for LIBs.
尖晶石型LiMnO正极材料通常会因严重的界面副反应而遭受锰溶解,尤其是在高温下。在此,报道了一种三维中空纺锤形LiMnO正极材料,其具有优先暴露的稳定{111}晶面和无缝外部结构,这通过微聚焦离子束扫描电子显微镜、高分辨率透射电子显微镜以及原子分辨率扫描透射电子显微镜得到了明确证实。由于优化的几何结构设计和优先暴露的稳定{111}晶面,该电极具有出色的倍率性能(10 C时为107.6 mAh g)、显著的循环稳定性(1 C下1000次循环后容量保持率为83.3%)以及优异的高温性能。结合电化学行为分析、不同温度下的原位X射线衍射以及非原位X射线光电子能谱,清晰阐明了抑制锰溶解的潜在工作机制。这些发现可为精确设计用于锂离子电池的高度稳定正极材料提供重要指导。