Materials Science and Engineering Department, University of Washington, Seattle, WA, 98195-2120, USA.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Adv Mater. 2018 Jan;30(1). doi: 10.1002/adma.201703725. Epub 2017 Nov 13.
Low-cost, environment-friendly aqueous Zn batteries have great potential for large-scale energy storage, but the intercalation of zinc ions in the cathode materials is challenging and complex. Herein, the critical role of structural H O on Zn intercalation into bilayer V O ·nH O is demonstrated. The results suggest that the H O-solvated Zn possesses largely reduced effective charge and thus reduced electrostatic interactions with the V O framework, effectively promoting its diffusion. Benefited from the "lubricating" effect, the aqueous Zn battery shows a specific energy of ≈144 Wh kg at 0.3 A g . Meanwhile, it can maintain an energy density of 90 Wh kg at a high power density of 6.4 kW kg (based on the cathode and 200% Zn anode), making it a promising candidate for high-performance, low-cost, safe, and environment-friendly energy-storage devices.
低成本、环保的水系锌电池在大规模储能方面具有巨大的潜力,但锌离子在阴极材料中的嵌入具有挑战性且复杂。本文证明了结构 H2O 在 Zn 嵌入双层 V2O5·nH2O 中的关键作用。结果表明,H2O 溶剂化的 Zn 具有大大降低的有效电荷,因此与 V2O5 框架的静电相互作用减弱,有效地促进了其扩散。得益于“润滑”效应,水系锌电池在 0.3 A g-1 的电流密度下表现出 ≈144 Wh kg-1 的比能量。同时,它可以在 6.4 kW kg-1(基于阴极和 200% Zn 阳极)的高功率密度下保持 90 Wh kg-1 的能量密度,使其成为高性能、低成本、安全和环保储能装置的有前途的候选者。