Suppr超能文献

基于卷积神经网络的双序列磁共振成像全自动鼻咽癌分割

Fully-Automated Segmentation of Nasopharyngeal Carcinoma on Dual-Sequence MRI Using Convolutional Neural Networks.

作者信息

Ye Yufeng, Cai Zongyou, Huang Bin, He Yan, Zeng Ping, Zou Guorong, Deng Wei, Chen Hanwei, Huang Bingsheng

机构信息

Department of Radiology, Panyu Central Hospital, Guangzhou, China.

Medical Imaging Institute of Panyu, Guangzhou, China.

出版信息

Front Oncol. 2020 Feb 19;10:166. doi: 10.3389/fonc.2020.00166. eCollection 2020.

Abstract

In this study, we proposed an automated method based on convolutional neural network (CNN) for nasopharyngeal carcinoma (NPC) segmentation on dual-sequence magnetic resonance imaging (MRI). T1-weighted (T1W) and T2-weighted (T2W) MRI images were collected from 44 NPC patients. We developed a dense connectivity embedding U-net (DEU) and trained the network based on the two-dimensional dual-sequence MRI images in the training dataset and applied post-processing to remove the false positive results. In order to justify the effectiveness of dual-sequence MRI images, we performed an experiment with different inputs in eight randomly selected patients. We evaluated DEU's performance by using a 10-fold cross-validation strategy and compared the results with the previous studies. The Dice similarity coefficient (DSC) of the method using only T1W, only T2W and dual-sequence of 10-fold cross-validation as different inputs were 0.620 ± 0.0642, 0.642 ± 0.118 and 0.721 ± 0.036, respectively. The median DSC in 10-fold cross-validation experiment with DEU was 0.735. The average DSC of seven external subjects was 0.87. To summarize, we successfully proposed and verified a fully automatic NPC segmentation method based on DEU and dual-sequence MRI images with accurate and stable performance. If further verified, our proposed method would be of use in clinical practice of NPC.

摘要

在本研究中,我们提出了一种基于卷积神经网络(CNN)的自动方法,用于在双序列磁共振成像(MRI)上进行鼻咽癌(NPC)分割。从44例NPC患者中收集了T1加权(T1W)和T2加权(T2W)MRI图像。我们开发了一种密集连接嵌入U型网络(DEU),并基于训练数据集中的二维双序列MRI图像对网络进行训练,并应用后处理来去除假阳性结果。为了验证双序列MRI图像的有效性,我们在八名随机选择的患者中使用不同输入进行了实验。我们采用10折交叉验证策略评估DEU的性能,并将结果与先前的研究进行比较。仅使用T1W、仅使用T2W以及将双序列作为不同输入进行10折交叉验证的方法的骰子相似系数(DSC)分别为0.620±0.0642、0.642±0.118和0.721±0.036。使用DEU进行的10折交叉验证实验中的DSC中位数为0.735。七名外部受试者的平均DSC为0.87。总之,我们成功提出并验证了一种基于DEU和双序列MRI图像的全自动NPC分割方法,该方法具有准确且稳定的性能。如果得到进一步验证,我们提出的方法将可用于NPC的临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4730/7045897/4476b1515e5a/fonc-10-00166-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验