Suppr超能文献

卷积神经网络在鼻咽癌中的应用:非增强型脂肪抑制 T2 加权 MRI 上自动勾画原发肿瘤的效果如何?

Convolutional neural network in nasopharyngeal carcinoma: how good is automatic delineation for primary tumor on a non-contrast-enhanced fat-suppressed T2-weighted MRI?

机构信息

Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong SAR.

Department of Clinical Oncology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.

出版信息

Jpn J Radiol. 2021 Jun;39(6):571-579. doi: 10.1007/s11604-021-01092-x. Epub 2021 Feb 5.

Abstract

PURPOSE

Convolutional neural networks (CNNs) show potential for delineating cancers on contrast-enhanced MRI (ce-MRI) but there are clinical scenarios in which administration of contrast is not desirable. We investigated performance of the CNN for delineating primary nasopharyngeal carcinoma (NPC) on non-contrast-enhanced images and compared the performance to that on ce-MRI.

MATERIALS AND METHODS

We retrospectively analyzed primary NPC in 195 patients using a well-established CNN, U-Net, for tumor delineation on the non-contrast-enhanced fat-suppressed (fs)-T2W, ce-T1W and ce-fs-T1W images. The CNN-derived delineations were compared to manual delineations to obtain Dice similarity coefficient (DSC) and average surface distance (ASD). The DSC and ASD on fs-T2W were compared to those on ce-MRI. Primary tumor volumes (PTVs) of CNN-derived delineations were compared to that of manual delineations.

RESULTS

The CNN for NPC delineation on fs-T2W images showed similar DSC (0.71 ± 0.09) and ASD (0.21 ± 0.48 cm) to those on ce-T1W images (0.71 ± 0.09 and 0.17 ± 0.19 cm, respectively) (p > 0.05), and lower DSC but similar ASD to ce-fs-T1W images (0.73 ± 0.09, p < 0.001; and 0.17 ± 0.20 cm, p > 0.05). The CNN overestimated PTVs on all sequences (p < 0.001).

CONCLUSION

The CNN showed promise for NPC delineation on fs-T2W images in cases where it is desirable to avoid contrast agent injection. The CNN overestimated PTVs on all sequences.

摘要

目的

卷积神经网络(CNNs)在勾画对比增强磁共振成像(ce-MRI)上的癌症方面显示出潜力,但在某些临床情况下,不希望使用造影剂。我们研究了该 CNN 在勾画非增强图像上的原发鼻咽癌(NPC)的性能,并将其与 ce-MRI 上的性能进行了比较。

材料和方法

我们使用一种经过充分验证的 CNN,即 U-Net,对 195 例原发性 NPC 患者的非增强脂肪抑制(fs)-T2W、ce-T1W 和 ce-fs-T1W 图像进行肿瘤勾画。将 CNN 勾画结果与手动勾画结果进行比较,以获得 Dice 相似系数(DSC)和平均表面距离(ASD)。比较 fs-T2W 上的 DSC 和 ASD 与 ce-MRI 上的 DSC 和 ASD。比较 CNN 勾画的原发肿瘤体积(PTV)与手动勾画的 PTV。

结果

NPC 勾画的 CNN 在 fs-T2W 图像上的 DSC(0.71±0.09)和 ASD(0.21±0.48 cm)与 ce-T1W 图像(0.71±0.09 和 0.17±0.19 cm)相似(p>0.05),但 DSC 较低,与 ce-fs-T1W 图像相似 ASD(0.73±0.09,p<0.001;0.17±0.20 cm,p>0.05)。CNN 在所有序列上均高估了 PTV(p<0.001)。

结论

在希望避免造影剂注射的情况下,CNN 有望在 fs-T2W 图像上勾画 NPC。CNN 在所有序列上均高估了 PTV。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验