Suppr超能文献

理解社交媒体时代患者的焦虑情绪:对一个在线男性不育症社区的定性分析与自然语言处理

Understanding Patient Anxieties in the Social Media Era: Qualitative Analysis and Natural Language Processing of an Online Male Infertility Community.

作者信息

Osadchiy Vadim, Mills Jesse Nelson, Eleswarapu Sriram Venkata

机构信息

Division of Andrology, Department of Urology, David Geffen School of Medicine, University of California,, Los Angeles, CA, United States.

Consortium for Health Activity on Social Media, David Geffen School of Medicine, University of California,, Los Angeles, CA, United States.

出版信息

J Med Internet Res. 2020 Mar 10;22(3):e16728. doi: 10.2196/16728.

Abstract

BACKGROUND

Couples struggling with infertility are increasingly turning to the internet for infertility-related content and to connect with others. Most of the published data on infertility and the internet only address the experiences of women, with limited studies focusing exclusively on internet discussions on male factor infertility.

OBJECTIVE

The aim of this study was to understand the concerns and experiences of discussants on an online male infertility community and to provide insight into their perceptions of interactions with health care professionals.

METHODS

Using the large-scale data analytics tool BigQuery, we extracted all posts in the r/MaleInfertility community (877 members) of the social media website and discussion board Reddit from November 2017 to October 2018. We performed a qualitative thematic analysis and quantitative semantic analysis using Language Inquiry and Word Count 2015 of the extracted posts to identify dominant themes and subthemes of discussions. Descriptive statistics and semantic analytic Z-scores were computed.

RESULTS

From the analysis of 97 posts, notable themes and subthemes emerged: 70 (72%) posts shared personal experiences, including feeling emasculated or isolated or describing a negative (28/97, 29%), positive (13/97, 13%), or neutral (56/97, 58%) experience with a health care professional; 19% (18/97) of the posts posed questions about personal semen analysis results. On the basis of semantic analysis, posts by men had higher authenticity scores (Z=3.44; P<.001), suggesting more honest or personal texts, but lower clout scores (Z=4.57; P<.001), suggesting a more tentative or anxious style of writing, compared with posts by women.

CONCLUSIONS

To our knowledge, this study represents the first evaluation of a social media community focused exclusively on male infertility using mixed methodology. These results suggest a role for physicians on social media to engage with patients and connect them to accurate resources, in addition to opportunities to improve in-office patient education.

摘要

背景

正在与不孕症作斗争的夫妇越来越多地转向互联网获取与不孕相关的内容,并与他人建立联系。大多数已发表的关于不孕症和互联网的数据仅涉及女性的经历,专门关注男性因素不孕症的互联网讨论的研究有限。

目的

本研究的目的是了解在线男性不育症社区讨论者的担忧和经历,并深入了解他们对与医疗保健专业人员互动的看法。

方法

我们使用大规模数据分析工具BigQuery,提取了2017年11月至2018年10月社交媒体网站和讨论板Reddit的r/男性不育症社区(877名成员)中的所有帖子。我们使用2015年语言查询和词数工具对提取的帖子进行了定性主题分析和定量语义分析,以确定讨论的主要主题和子主题。计算了描述性统计数据和语义分析Z分数。

结果

通过对97篇帖子的分析,出现了显著的主题和子主题:70篇(72%)帖子分享了个人经历,包括感到 emasculated(无能或自卑)或孤立,或描述与医疗保健专业人员的负面(28/97,29%)、正面(13/97,13%)或中性(56/97,58%)经历;19%(18/97)的帖子对个人精液分析结果提出了问题。基于语义分析,与女性帖子相比,男性帖子的真实性得分更高(Z=3.44;P<.001),表明文本更诚实或更具个人色彩,但影响力得分更低(Z=4.57;P<.001),表明写作风格更试探性或焦虑。

结论

据我们所知,本研究代表了首次使用混合方法对专门关注男性不育症的社交媒体社区进行的评估。这些结果表明,除了有机会改善门诊患者教育外,医生在社交媒体上与患者互动并将他们与准确的资源联系起来也能发挥作用。

相似文献

引用本文的文献

8
Artificial Intelligence Augmented Qualitative Analysis: The Way of the Future?人工智能增强的定性分析:未来之路?
Qual Health Res. 2024 Jun;34(7):595-606. doi: 10.1177/10497323231217392. Epub 2023 Dec 8.

本文引用的文献

2
Analysis of online discussion boards for male infertility.男性不育症在线讨论板分析。
Andrologia. 2019 Dec;51(11):e13422. doi: 10.1111/and.13422. Epub 2019 Oct 22.
7
How Should Clinicians Engage With Online Health Information?临床医生应如何利用在线健康信息?
AMA J Ethics. 2018 Nov 1;20(11):E1059-1066. doi: 10.1001/amajethics.2018.1059.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验