Suppr超能文献

金钱激励对医疗保健社交媒体内容的影响:基于主题建模和情感分析的研究。

The Effect of Monetary Incentives on Health Care Social Media Content: Study Based on Topic Modeling and Sentiment Analysis.

机构信息

School of Information Systems and Management, University of South Florida, Tampa, FL, United States.

出版信息

J Med Internet Res. 2023 May 11;25:e44307. doi: 10.2196/44307.

Abstract

BACKGROUND

While there is high-quality online health information, a lot of recent work has unfortunately highlighted significant issues with the health content on social media platforms (eg, fake news and misinformation), the consequences of which are severe in health care. One solution is to investigate methods that encourage users to post high-quality content.

OBJECTIVE

Incentives have been shown to work in many domains, but until recently, there was no method to provide financial incentives easily on social media for users to generate high-quality content. This study investigates the following question: What effect does the provision of incentives have on the creation of social media health care content?

METHODS

We analyzed 8328 health-related posts from an incentive-based platform (Steemit) and 1682 health-related posts from a traditional platform (Reddit). Using topic modeling and sentiment analysis-based methods in machine learning, we analyzed these posts across the following 3 dimensions: (1) emotion and language style using the IBM Watson Tone Analyzer service, (2) topic similarity and difference from contrastive topic modeling, and (3) the extent to which posts resemble clickbait. We also conducted a survey using 276 Amazon Mechanical Turk (MTurk) users and asked them to score the quality of Steemit and Reddit posts.

RESULTS

Using the Watson Tone Analyzer in a sample of 2000 posts from Steemit and Reddit, we found that more than double the number of Steemit posts had a confident language style compared with Reddit posts (77 vs 30). Moreover, 50% more Steemit posts had analytical content and 33% less Steemit posts had a tentative language style compared with Reddit posts (619 vs 430 and 416 vs 627, respectively). Furthermore, more than double the number of Steemit posts were considered joyful compared with Reddit posts (435 vs 200), whereas negative posts (eg, sadness, fear, and anger) were 33% less on Steemit than on Reddit (384 vs 569). Contrastive topic discovery showed that only 20% (2/10) of topics were common, and Steemit had more unique topics than Reddit (5 vs 3). Qualitatively, Steemit topics were more informational, while Reddit topics involved discussions, which may explain some of the quantitative differences. Manual labeling marked more Steemit headlines as clickbait than Reddit headlines (66 vs 26), and machine learning model labeling consistently identified a higher percentage of Steemit headlines as clickbait than Reddit headlines. In the survey, MTurk users said that at least 57% of Steemit posts had better quality than Reddit posts, and they were at least 52% more likely to like and comment on Steemit posts than Reddit posts.

CONCLUSIONS

It is becoming increasingly important to ensure high-quality health content on social media; therefore, incentive-based social media could be important in the design of next-generation social platforms for health information.

摘要

背景

虽然有高质量的在线健康信息,但最近很多工作都不幸地强调了社交媒体平台上健康内容存在的严重问题(例如,假新闻和错误信息),这对医疗保健造成了严重后果。一种解决方案是研究鼓励用户发布高质量内容的方法。

目的

激励措施已在许多领域得到证明有效,但直到最近,还没有一种在社交媒体上为用户生成高质量内容提供经济激励的简便方法。本研究探讨了以下问题:提供激励措施对社交媒体医疗保健内容的创建有什么影响?

方法

我们分析了来自基于激励的平台(Steemit)的 8328 条与健康相关的帖子和来自传统平台(Reddit)的 1682 条与健康相关的帖子。使用机器学习中的主题建模和基于情感分析的方法,我们从以下三个方面分析了这些帖子:(1)使用 IBM Watson Tone Analyzer 服务分析情感和语言风格,(2)对比主题建模分析主题相似性和差异,(3)帖子与点击诱饵的相似程度。我们还使用 276 名亚马逊 Mechanical Turk(MTurk)用户进行了一项调查,并要求他们对 Steemit 和 Reddit 帖子的质量进行评分。

结果

在对 Steemit 和 Reddit 各 2000 条帖子进行 Watson Tone Analyzer 分析后,我们发现 Steemit 帖子的自信语言风格比 Reddit 帖子多两倍以上(77 比 30)。此外,Steemit 帖子的分析内容比 Reddit 帖子多 50%,而 Steemit 帖子的试探性语言风格比 Reddit 帖子少 33%(分别为 619 比 430 和 416 比 627)。此外,Steemit 帖子中被认为是快乐的帖子比 Reddit 帖子多一倍以上(435 比 200),而负面帖子(例如悲伤、恐惧和愤怒)在 Steemit 上比在 Reddit 上少 33%(384 比 569)。对比主题发现,只有 20%(2/10)的主题是共同的,Steemit 的独特主题比 Reddit 多(5 比 3)。定性分析表明,Steemit 的主题更具信息性,而 Reddit 的主题则涉及讨论,这可能解释了一些定量差异。手动标记将更多的 Steemit 标题标记为点击诱饵,而 Reddit 标题则标记为点击诱饵(66 比 26),机器学习模型标记一致地将更高比例的 Steemit 标题标记为点击诱饵,而 Reddit 标题则标记为点击诱饵。在调查中,MTurk 用户表示,至少有 57%的 Steemit 帖子比 Reddit 帖子质量更好,他们至少有 52%的可能性更喜欢和评论 Steemit 帖子而不是 Reddit 帖子。

结论

确保社交媒体上的高质量健康内容变得越来越重要;因此,基于激励的社交媒体可能是下一代健康信息社交媒体平台设计的重要组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2062/10214112/ddebe281a189/jmir_v25i1e44307_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验