Suppr超能文献

英格兰院外心脏骤停结局的风险预测模型。

Risk prediction models for out-of-hospital cardiac arrest outcomes in England.

机构信息

Warwick Clinical Trials Unit, University of Warwick, Coventry CV4 7AL, UK.

Royal United Hospitals, Bath BA1 3NG, UK.

出版信息

Eur Heart J Qual Care Clin Outcomes. 2021 Mar 15;7(2):198-207. doi: 10.1093/ehjqcco/qcaa019.

Abstract

AIMS

The out-of-hospital cardiac arrest (OHCA) outcomes project is a national research registry. One of its aims is to explore sources of variation in OHCA survival outcomes. This study reports the development and validation of risk prediction models for return of spontaneous circulation (ROSC) at hospital handover and survival to hospital discharge.

METHODS AND RESULTS

The study included OHCA patients who were treated during 2014 and 2015 by emergency medical services (EMS) from seven English National Health Service ambulance services. The 2014 data were used to identify important variables and to develop the risk prediction models, which were validated using the 2015 data. Model prediction was measured by area under the curve (AUC), Hosmer-Lemeshow test, Cox calibration regression, and Brier score. All analyses were conducted using mixed-effects logistic regression models. Important factors included age, gender, witness/bystander cardiopulmonary resuscitation (CPR) combined, aetiology, and initial rhythm. Interaction effects between witness/bystander CPR with gender, aetiology and initial rhythm and between aetiology and initial rhythm were significant in both models. The survival model achieved better discrimination and overall accuracy compared with the ROSC model (AUC = 0.86 vs. 0.67, Brier score = 0.072 vs. 0.194, respectively). Calibration tests showed over- and under-estimation for the ROSC and survival models, respectively. A sensitivity analysis individually assessing Index of Multiple Deprivation scores and location in the final models substantially improved overall accuracy with inconsistent impact on discrimination.

CONCLUSION

Our risk prediction models identified and quantified important pre-EMS intervention factors determining survival outcomes in England. The survival model had excellent discrimination.

摘要

目的

院外心脏骤停(OHCA)结局项目是一个国家研究注册中心。其目的之一是探讨 OHCA 生存结局变化的来源。本研究报告了在医院交接时自主循环恢复(ROSC)和存活至出院的风险预测模型的开发和验证。

方法和结果

该研究纳入了 2014 年至 2015 年期间由英国 7 个国家卫生服务机构的紧急医疗服务(EMS)治疗的 OHCA 患者。2014 年的数据用于确定重要变量并开发风险预测模型,然后使用 2015 年的数据对其进行验证。通过曲线下面积(AUC)、Hosmer-Lemeshow 检验、Cox 校准回归和 Brier 评分来衡量模型预测。所有分析均采用混合效应逻辑回归模型进行。重要因素包括年龄、性别、目击者/旁观者心肺复苏(CPR)联合、病因和初始节律。在两个模型中,目击者/旁观者 CPR 与性别、病因和初始节律以及病因和初始节律之间的交互作用均具有统计学意义。与 ROSC 模型相比,生存模型的判别力和整体准确性更好(AUC=0.86 比 0.67,Brier 评分=0.072 比 0.194)。校准检验表明,ROSC 和生存模型分别存在高估和低估。在最终模型中分别单独评估多重剥夺指数评分和位置的敏感性分析显著提高了整体准确性,但对判别力的影响不一致。

结论

我们的风险预测模型确定并量化了英格兰 EMS 干预前决定生存结局的重要因素。生存模型具有良好的判别力。

相似文献

1
Risk prediction models for out-of-hospital cardiac arrest outcomes in England.英格兰院外心脏骤停结局的风险预测模型。
Eur Heart J Qual Care Clin Outcomes. 2021 Mar 15;7(2):198-207. doi: 10.1093/ehjqcco/qcaa019.
10
Traumatic out-of-hospital cardiac arrests in Melbourne, Australia.澳大利亚墨尔本院外创伤性心搏骤停。
Resuscitation. 2012 Apr;83(4):465-70. doi: 10.1016/j.resuscitation.2011.09.025. Epub 2011 Oct 10.

引用本文的文献

本文引用的文献

2
A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest.一项肾上腺素在院外心脏骤停中的随机试验。
N Engl J Med. 2018 Aug 23;379(8):711-721. doi: 10.1056/NEJMoa1806842. Epub 2018 Jul 18.
3
The chain of survival: Not all links are equal.生存链:并非所有环节都同等重要。
Resuscitation. 2018 May;126:80-82. doi: 10.1016/j.resuscitation.2018.02.012. Epub 2018 Feb 19.
5
Epidemiology and outcomes from out-of-hospital cardiac arrests in England.英格兰院外心脏骤停的流行病学及结果
Resuscitation. 2017 Jan;110:133-140. doi: 10.1016/j.resuscitation.2016.10.030. Epub 2016 Nov 17.
9
Regional Variation in Out-of-Hospital Cardiac Arrest Survival in the United States.美国院外心脏骤停生存率的地区差异。
Circulation. 2016 May 31;133(22):2159-68. doi: 10.1161/CIRCULATIONAHA.115.018175. Epub 2016 Apr 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验