Suppr超能文献

动态压缩载荷下基质金属蛋白酶敏感型聚乙二醇水凝胶中的时空新软骨生长:实验和计算方法。

Spatiotemporal neocartilage growth in matrix-metalloproteinase-sensitive poly(ethylene glycol) hydrogels under dynamic compressive loading: an experimental and computational approach.

机构信息

Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave., Boulder, Colorado 80309-0596, USA.

Department of Mechanical Engineering, University of Colorado, 1111 Engineering Dr., Boulder, Colorado 80309-0596, USA.

出版信息

J Mater Chem B. 2020 Apr 8;8(14):2775-2791. doi: 10.1039/c9tb02963j.

Abstract

Enzyme-sensitive hydrogels containing encapsulated chondrocytes are a promising platform for cartilage tissue engineering. However, the growth of neotissue is closely coupled to the degradation of the hydrogel and is further complicated due to the encapsulated cells serving as the enzyme source for hydrogel degradation. To better understand these coupled processes, this study combined experimental and computational methods to analyze the transition from hydrogel to neotissue in a biomimetic MMP-sensitive poly(ethylene glycol) (PEG) hydrogel with encapsulated chondrocytes. A physics-based computational model that describes spatial heterogeneities in cell distribution was used. Experimentally, cell-laden hydrogels were cultured for six weeks under free swelling or subjected daily to one-hour of dynamic compressive loading. Extracellular matrix (ECM) synthesis rates were used as model inputs, and the model was fit to the experimentally determined construct modulus over time for the free swelling condition. Experimentally, ECM accumulation comprising collagen II and aggrecan increased over time concomitant with hydrogel degradation observed by a loss in PEG. Simulations demonstrated rapid degradation in regions of high cell density (i.e., cell clusters) reaching complete degradation by day 13, which facilitated localized ECM growth. Regions of low cell density degraded more slowly, had limited ECM, and led to the decrease in construct modulus during the first two weeks. The primary difference between the two culture environments was greater ECM accumulation in the clusters under free swelling, which facilitated a faster recovery in construct modulus. By 6 weeks the compressive modulus increased 2.5-fold to 107 kPa under free swelling, but dropped 1.6-fold to 26 kPa under loading. In summary, this biomimetic MMP-sensitive hydrogel supports neocartilage growth by facilitating rapid ECM growth within cell clusters, which was followed by slower growth in the rest of the hydrogel. Subtle temporal differences in hydrogel degradation and ECM accumulation, however, had a significant impact on the evolving mechanical properties.

摘要

含包封软骨细胞的酶敏感水凝胶是软骨组织工程的有前途的平台。然而,新组织的生长与水凝胶的降解密切相关,并且由于包封的细胞充当水凝胶降解的酶源,因此变得更加复杂。为了更好地理解这些耦合过程,本研究结合实验和计算方法,分析了在含有包封软骨细胞的仿生 MMP 敏感聚乙二醇(PEG)水凝胶中,水凝胶向新组织的转变。使用了一种描述细胞分布空间异质性的基于物理的计算模型。实验上,在自由溶胀或每天进行一小时动态压缩加载的条件下培养细胞负载水凝胶 6 周。细胞外基质(ECM)合成率用作模型输入,并且将模型拟合到实验确定的自由溶胀条件下的构建体模量随时间的变化。实验上,随着 PEG 的损失,观察到水凝胶降解,同时 ECM 合成率增加,包括胶原 II 和聚集蛋白聚糖。模拟表明,在细胞密度高的区域(即细胞簇)迅速降解,到第 13 天完全降解,从而促进了局部 ECM 的生长。细胞密度低的区域降解较慢,ECM 有限,导致在前两周构建体模量下降。两种培养环境的主要区别是在自由溶胀下,簇中的 ECM 积累更多,从而更快地恢复构建体模量。到 6 周时,在自由溶胀下压缩模量增加了 2.5 倍,达到 107 kPa,但在加载下降低了 1.6 倍,达到 26 kPa。总之,这种仿生 MMP 敏感水凝胶通过促进细胞簇内 ECM 的快速生长来支持新软骨的生长,随后水凝胶的其余部分生长缓慢。然而,水凝胶降解和 ECM 积累的细微时间差异对不断变化的机械性能有重大影响。

相似文献

3
Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
Acta Biomater. 2016 Jul 15;39:1-11. doi: 10.1016/j.actbio.2016.05.015. Epub 2016 May 11.
4
Degradation improves tissue formation in (un)loaded chondrocyte-laden hydrogels.
Clin Orthop Relat Res. 2011 Oct;469(10):2725-34. doi: 10.1007/s11999-011-1823-0.
6
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels.
Osteoarthritis Cartilage. 2010 Jan;18(1):126-37. doi: 10.1016/j.joca.2009.08.005. Epub 2009 Sep 1.
7
9
Characterization of the chondrocyte secretome in photoclickable poly(ethylene glycol) hydrogels.
Biotechnol Bioeng. 2017 Sep;114(9):2096-2108. doi: 10.1002/bit.26320. Epub 2017 May 12.
10
Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels.
J Mater Sci Mater Med. 2008 Nov;19(11):3311-8. doi: 10.1007/s10856-008-3469-3. Epub 2008 May 22.

引用本文的文献

1
Stimuli-Responsive Self-Healing Ionic Gels: A Promising Approach for Dermal and Tissue Engineering Applications.
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1338-1372. doi: 10.1021/acsbiomaterials.4c02264. Epub 2025 Feb 25.
2
Stimuli-responsive hydrogels for bone tissue engineering.
Biomater Transl. 2024 Sep 28;5(3):257-273. doi: 10.12336/biomatertransl.2024.03.004. eCollection 2024.
4
Osteogenic effects of covalently tethered rhBMP-2 and rhBMP-9 in an MMP-sensitive PEG hydrogel nanocomposite.
Acta Biomater. 2023 Oct 15;170:53-67. doi: 10.1016/j.actbio.2023.08.045. Epub 2023 Aug 26.
5
Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration.
Front Bioeng Biotechnol. 2022 Nov 14;10:1058251. doi: 10.3389/fbioe.2022.1058251. eCollection 2022.
6
Polymeric Hydrogels for Controlled Drug Delivery to Treat Arthritis.
Pharmaceutics. 2022 Feb 28;14(3):540. doi: 10.3390/pharmaceutics14030540.

本文引用的文献

1
The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel.
J Tissue Eng Regen Med. 2019 Jun;13(6):946-959. doi: 10.1002/term.2827. Epub 2019 May 7.
2
Local Heterogeneities Improve Matrix Connectivity in Degradable and Photoclickable Poly(ethylene glycol) Hydrogels for Applications in Tissue Engineering.
ACS Biomater Sci Eng. 2017 Oct 9;3(10):2480-2492. doi: 10.1021/acsbiomaterials.7b00348. Epub 2017 Jul 10.
3
Heterogeneity is key to hydrogel-based cartilage tissue regeneration.
Soft Matter. 2017 Jul 19;13(28):4841-4855. doi: 10.1039/c7sm00423k.
5
Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: a mathematical model.
Soft Matter. 2016 Sep 28;12(36):7505-20. doi: 10.1039/c6sm00583g. Epub 2016 Aug 22.
6
Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
Acta Biomater. 2016 Jul 15;39:1-11. doi: 10.1016/j.actbio.2016.05.015. Epub 2016 May 11.
7
The In Vitro and In Vivo Response to MMP-Sensitive Poly(Ethylene Glycol) Hydrogels.
Ann Biomed Eng. 2016 Jun;44(6):1959-69. doi: 10.1007/s10439-016-1608-4. Epub 2016 Apr 14.
8
Tuning Reaction and Diffusion Mediated Degradation of Enzyme-Sensitive Hydrogels.
Adv Healthc Mater. 2016 Feb 18;5(4):432-8. doi: 10.1002/adhm.201500728. Epub 2016 Jan 19.
10
A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization.
Adv Mater. 2009 Dec 28;21(48):5005-5010. doi: 10.1002/adma.200901808. Epub 2009 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验