Suppr超能文献

异质性是基于水凝胶的软骨组织再生的关键。

Heterogeneity is key to hydrogel-based cartilage tissue regeneration.

机构信息

Department of Mechanical Engineering, University of Colorado Boulder, USA.

出版信息

Soft Matter. 2017 Jul 19;13(28):4841-4855. doi: 10.1039/c7sm00423k.

Abstract

Degradable hydrogels have been developed to provide initial mechanical support to encapsulated cells while facilitating the growth of neo-tissues. When cells are encapsulated within degradable hydrogels, the process of neo-tissue growth is complicated by the coupled phenomena of transport of large extracellular matrix macromolecules and the rate of hydrogel degradation. If hydrogel degradation is too slow, neo-tissue growth is hindered, whereas if it is too fast, complete loss of mechanical integrity can occur. Therefore, there is a need for effective modelling techniques to predict hydrogel designs based on the growth parameters of the neo-tissue. In this article, hydrolytically degradable hydrogels are investigated due to their promise in tissue engineering. A key output of the model focuses on the ability of the construct to maintain overall structural integrity as the construct transitions from a pure hydrogel to engineered neo-tissue. We show that heterogeneity in cross-link density and cell distribution is the key to this successful transition and ultimately to achieve tissue growth. Specifically, we find that optimally large regions of weak cross-linking around cells in the hydrogel and well-connected and dense cell clusters create the optimum conditions needed for neo-tissue growth while maintaining structural integrity. Experimental observations using cartilage cells encapsulated in a hydrolytically degradable hydrogel are compared with model predictions to show the potential of the proposed model.

摘要

可降解水凝胶的开发旨在为包封细胞提供初始机械支撑,同时促进新组织的生长。当细胞被包封在可降解水凝胶中时,新组织生长的过程会受到两个耦合现象的影响,即细胞外基质大分子的传输和水凝胶降解的速率。如果水凝胶降解太慢,新组织的生长会受到阻碍,而如果降解太快,机械完整性会完全丧失。因此,需要有效的建模技术来根据新组织的生长参数预测水凝胶设计。在本文中,由于其在组织工程中的应用前景,研究了可水解的水凝胶。该模型的一个关键输出是构建体在从纯水凝胶向工程化新组织转变过程中保持整体结构完整性的能力。我们表明,交联密度和细胞分布的异质性是实现这一成功转变的关键,也是实现组织生长的关键。具体来说,我们发现水凝胶中细胞周围的弱交联区域和连接良好且密集的细胞簇的最佳大小区域为新组织生长创造了最佳条件,同时保持了结构完整性。使用包封在可水解的水凝胶中的软骨细胞进行的实验观察与模型预测进行了比较,以展示所提出模型的潜力。

相似文献

10
Tissue engineered hydrogels supporting 3D neural networks.组织工程水凝胶支持 3D 神经网络。
Acta Biomater. 2019 Sep 1;95:269-284. doi: 10.1016/j.actbio.2018.11.044. Epub 2018 Nov 27.

引用本文的文献

4
Enhanced diffusion by reversible binding to active polymers.通过与活性聚合物可逆结合实现增强扩散。
Macromolecules. 2021 Feb 23;54(4):1850-1858. doi: 10.1021/acs.macromol.0c02306. Epub 2021 Feb 10.

本文引用的文献

5
6
A mixture approach to investigate interstitial growth in engineering scaffolds.一种用于研究工程支架中间质生长的混合方法。
Biomech Model Mechanobiol. 2016 Apr;15(2):259-78. doi: 10.1007/s10237-015-0684-y. Epub 2015 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验