Suppr超能文献

锌稳态失衡增强香烟烟雾暴露后的肺组织损失。

Imbalance in zinc homeostasis enhances lung Tissue Loss following cigarette smoke exposure.

机构信息

The University of Nebraska Medical Center College of Pharmacy, Omaha, NE, 68198, United States.

The Ohio State University College of Medicine, Columbus, OH, 43210, United States.

出版信息

J Trace Elem Med Biol. 2020 Jul;60:126483. doi: 10.1016/j.jtemb.2020.126483. Epub 2020 Feb 27.

Abstract

UNLABELLED

Cigarette smoke exposure is a major cause of chronic obstructive pulmonary disease. Cadmium is a leading toxic component of cigarette smoke. Cadmium and zinc are highly related metals. Whereas, zinc is an essential metal required for normal health, cadmium is highly toxic. Zrt- and Irt-like protein 8 (ZIP8) is an avid transporter of both zinc and cadmium into cells and is abundantly expressed in the lung of smokers compared to nonsmokers. Our objective was to determine whether disturbed zinc homeostasis through diet or the zinc transporter ZIP8 increase susceptibility to lung damage following prolonged cigarette smoke exposure.

METHODS

Cigarette smoke exposure was evaluated in the lungs of mice subject to insufficient and sufficient zinc intakes, in transgenic ZIP8 overexpressing mice, and a novel myeloid-specific ZIP8 knockout strain.

RESULTS

Moderate depletion of zinc intakes in adult mice resulted in a significant increase in lung cadmium burden and permanent lung tissue loss following prolonged smoke exposure. Overexpression of ZIP8 resulted in increased lung cadmium burden and more extensive lung damage, whereas cigarette smoke exposure in ZIP8 knockout mice resulted in increased lung tissue loss without a change in lung cadmium content, but a decrease in zinc.

CONCLUSIONS

Overall, findings were consistent with past human studies. Imbalance in Zn homeostasis increases susceptibility to permanent lung injury following prolonged cigarette smoke exposure. Based on animal studies, both increased and decreased ZIP8 expression enhanced irreversible tissue damage in response to prolonged tobacco smoke exposure. We believe these findings represent an important advancement in our understanding of how imbalance in zinc homeostasis and cadmium exposure via tobacco smoke may increase susceptibility to smoking-induced lung disease.

摘要

未加标签

吸烟是导致慢性阻塞性肺疾病的主要原因。镉是香烟烟雾的主要有毒成分之一。镉和锌是高度相关的金属。锌是人体正常健康所需的必需金属,而镉则具有高度毒性。Zrt-和 Irt 样蛋白 8(ZIP8)是一种将锌和镉大量转运到细胞内的活跃转运体,在吸烟者的肺部中表达丰富,而非吸烟者则较少。我们的目的是确定饮食或锌转运体 ZIP8 引起的锌稳态紊乱是否会增加在长期吸烟后对肺损伤的易感性。

方法

在摄入锌不足和充足的饮食条件下、在过表达 ZIP8 的转基因小鼠以及新型髓系特异性 ZIP8 敲除品系中评估香烟烟雾暴露对小鼠肺部的影响。

结果

成年小鼠适度缺锌会导致在长期吸烟后肺部镉负荷增加和永久性肺组织损失。ZIP8 的过表达导致肺部镉负荷增加和更广泛的肺损伤,而在 ZIP8 敲除小鼠中,香烟烟雾暴露会导致肺组织损失增加而肺部镉含量不变,但锌含量减少。

结论

总体而言,这些发现与过去的人类研究一致。锌稳态失衡会增加在长期吸烟后发生永久性肺损伤的易感性。基于动物研究,ZIP8 表达的增加和减少都会增强对长期烟草烟雾暴露的不可逆组织损伤。我们认为这些发现代表了对理解锌稳态失衡和通过烟草烟雾暴露导致的镉暴露如何增加对吸烟引起的肺部疾病的易感性的重要进展。

相似文献

1
Imbalance in zinc homeostasis enhances lung Tissue Loss following cigarette smoke exposure.
J Trace Elem Med Biol. 2020 Jul;60:126483. doi: 10.1016/j.jtemb.2020.126483. Epub 2020 Feb 27.
2
Cadmium-mediated toxicity of lung epithelia is enhanced through NF-κB-mediated transcriptional activation of the human zinc transporter ZIP8.
Am J Physiol Lung Cell Mol Physiol. 2012 May 1;302(9):L909-18. doi: 10.1152/ajplung.00351.2011. Epub 2012 Feb 17.
3
Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels.
Respir Res. 2014 Jun 23;15(1):69. doi: 10.1186/1465-9921-15-69.
4
Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities.
Int J Environ Res Public Health. 2017 Sep 29;14(10):1154. doi: 10.3390/ijerph14101154.
5
Hepatic ZIP8 deficiency is associated with disrupted selenium homeostasis, liver pathology, and tumor formation.
Am J Physiol Gastrointest Liver Physiol. 2018 Oct 1;315(4):G569-G579. doi: 10.1152/ajpgi.00165.2018. Epub 2018 Jun 21.
7
Critical Role of Zinc Transporter (ZIP8) in Myeloid Innate Immune Cell Function and the Host Response against Bacterial Pneumonia.
J Immunol. 2021 Sep 1;207(5):1357-1370. doi: 10.4049/jimmunol.2001395. Epub 2021 Aug 11.
8
ZIP8-Mediated Intestinal Dysbiosis Impairs Pulmonary Host Defense against Bacterial Pneumonia.
Int J Mol Sci. 2022 Jan 18;23(3):1022. doi: 10.3390/ijms23031022.
9
The uncoupling of autophagy and zinc homeostasis in airway epithelial cells as a fundamental contributor to COPD.
Am J Physiol Lung Cell Mol Physiol. 2017 Sep 1;313(3):L453-L465. doi: 10.1152/ajplung.00083.2017. Epub 2017 Jun 8.

引用本文的文献

1
Zinc Deficiency Induces Hepatic Oxidative Stress, Inflammation, and Programmed Cell Death in Mice.
Biol Trace Elem Res. 2025 Jun 24. doi: 10.1007/s12011-025-04715-w.
2
Dietary Zinc activates the Nrf2 signaling pathway to inhibit pyroptosis and attenuate the lung inflammatory response in COPD.
Cytotechnology. 2025 Apr;77(2):62. doi: 10.1007/s10616-025-00725-7. Epub 2025 Feb 18.
3
Zinc as a Mechanism-Based Strategy for Mitigation of Metals Toxicity.
Curr Environ Health Rep. 2025 Jan 18;12(1):5. doi: 10.1007/s40572-025-00474-x.
6
Interaction Between Tobacco Smoke Exposure and Zinc Intake and Its Effect on Periodontitis: Evidence From NHANES.
Int Dent J. 2024 Oct;74(5):978-986. doi: 10.1016/j.identj.2024.04.007. Epub 2024 Apr 30.
7
The activation of HAMP promotes colorectal cancer cell proliferation through zinc-mediated upregulation of SMAD4 expression.
Transl Cancer Res. 2024 Mar 31;13(3):1493-1507. doi: 10.21037/tcr-23-1292. Epub 2024 Mar 20.
8
Proton-Pump Inhibitors Suppress T Cell Response by Shifting Intracellular Zinc Distribution.
Int J Mol Sci. 2023 Jan 7;24(2):1191. doi: 10.3390/ijms24021191.
9
A mouse model characterizes the roles of ZIP8 in systemic iron recycling and lung inflammation and infection.
Blood Adv. 2023 Apr 11;7(7):1336-1349. doi: 10.1182/bloodadvances.2022007867.
10
The Role of Zinc in the Pathogenesis of Lung Disease.
Nutrients. 2022 May 19;14(10):2115. doi: 10.3390/nu14102115.

本文引用的文献

1
Zinc Intake Is Associated with Lower Cadmium Burden in U.S. Adults.
J Nutr. 2015 Dec;145(12):2741-8. doi: 10.3945/jn.115.223099. Epub 2015 Oct 21.
3
The bioinorganic chemistry of cadmium in the context of its toxicity.
Met Ions Life Sci. 2013;11:1-29. doi: 10.1007/978-94-007-5179-8_1.
4
Nutritional support in chronic obstructive pulmonary disease: a systematic review and meta-analysis.
Am J Clin Nutr. 2012 Jun;95(6):1385-95. doi: 10.3945/ajcn.111.023499. Epub 2012 Apr 18.
5
Cadmium-mediated toxicity of lung epithelia is enhanced through NF-κB-mediated transcriptional activation of the human zinc transporter ZIP8.
Am J Physiol Lung Cell Mol Physiol. 2012 May 1;302(9):L909-18. doi: 10.1152/ajplung.00351.2011. Epub 2012 Feb 17.
6
Reduction in cadmium exposure in the United States population, 1988-2008: the contribution of declining smoking rates.
Environ Health Perspect. 2012 Feb;120(2):204-9. doi: 10.1289/ehp.1104020. Epub 2011 Nov 7.
7
Immunologic impact of nutrient depletion in chronic obstructive pulmonary disease.
Curr Drug Targets. 2011 Apr;12(4):489-500. doi: 10.2174/138945011794751500.
8
Nutritional status in chronic obstructive pulmonary disease: role of hypoxia.
Nutrition. 2011 Feb;27(2):138-43. doi: 10.1016/j.nut.2010.07.009. Epub 2010 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验