Guo Yuan, Jud Werner, Ghirardo Andrea, Antritter Felix, Benz J Philipp, Schnitzler Jörg-Peter, Rosenkranz Maaria
Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
Holzforschung München, TUM School of Life Sciences Weihenstephan, Technical University of Munich, D-85354, Freising, Germany.
New Phytol. 2020 Jul;227(1):244-259. doi: 10.1111/nph.16530. Epub 2020 Apr 23.
Volatile organic compounds (VOCs) play vital roles in the interaction of fungi with plants and other organisms. A systematic study of the global fungal VOC profiles is still lacking, though it is a prerequisite for elucidating the mechanisms of VOC-mediated interactions. Here we present a versatile system enabling a high-throughput screening of fungal VOCs under controlled temperature. In a proof-of-principle experiment, we characterized the volatile metabolic fingerprints of four Trichoderma spp. over a 48 h growth period. The developed platform allows automated and fast detection of VOCs from up to 14 simultaneously growing fungal cultures in real time. The comprehensive analysis of fungal odors is achieved by employing proton transfer reaction-time of flight-MS and GC-MS. The data-mining strategy based on multivariate data analysis and machine learning allows the volatile metabolic fingerprints to be uncovered. Our data revealed dynamic, development-dependent and extremely species-specific VOC profiles from the biocontrol genus Trichoderma. The two mass spectrometric approaches were highly complementary to each other, together revealing a novel, dynamic view to the fungal VOC release. This analytical system could be used for VOC-based chemotyping of diverse small organisms, or more generally, for any in vivo and in vitro real-time headspace analysis.
挥发性有机化合物(VOCs)在真菌与植物及其他生物体的相互作用中起着至关重要的作用。尽管对挥发性有机化合物介导的相互作用机制进行阐释的前提是对全球真菌挥发性有机化合物概况进行系统研究,但目前仍缺乏这样的研究。在此,我们展示了一个通用系统,该系统能够在可控温度下对真菌挥发性有机化合物进行高通量筛选。在一个原理验证实验中,我们对四种木霉属真菌在48小时生长周期内的挥发性代谢指纹图谱进行了表征。所开发的平台能够实时自动快速检测多达14种同时生长的真菌培养物所产生的挥发性有机化合物。通过使用质子转移反应-飞行时间质谱仪(PTR-TOF-MS)和气相色谱-质谱联用仪(GC-MS)对真菌气味进行全面分析。基于多变量数据分析和机器学习的数据挖掘策略能够揭示挥发性代谢指纹图谱。我们的数据揭示了来自生防木霉属的动态、发育依赖性且极具物种特异性的挥发性有机化合物概况。这两种质谱方法相互高度互补,共同揭示了真菌挥发性有机化合物释放的全新动态视角。该分析系统可用于基于挥发性有机化合物的多种小型生物体化学分型,或者更广泛地说,用于任何体内和体外实时顶空分析。