Schuett Judith, Neitzel-Grieshammer Steffen, Takimoto Shuta, Kobayashi Ryo, Nakayama Masanobu
Faculty of Chemical Engineering, FH Münster - University of Applied Sciences Stegerwaldstraße 39 48565 Steinfurt Germany
Institute of Physical Chemistry, RWTH Aachen University Landoltweg 2 52056 Aachen Germany.
RSC Adv. 2025 Jun 2;15(23):18224-18236. doi: 10.1039/d5ra01549a. eCollection 2025 May 29.
Scandium-substituted Na Sc Zr Si P O NaSICONs have emerged as promising electrolyte materials for all-solid-state sodium batteries. However, the comprehensive investigation of these multi-element structures is challenging due to their vast compositional space, leading to a limited number of compositions explored thus far. In this study, we address this issue by employing low-cost, yet high-precision force field molecular dynamics simulations based on density functional theory to investigate the Na mobility and resulting conductivity in Na Sc Zr Si P O (0 ≤ ≤ 3; 0 ≤ ≤ 2). Our findings show that the incorporation of Sc- and Si-substituents enhances the conductivity, achieving values of 10 S cm at room temperature for moderate to high substitution degrees. Moreover, our study demonstrates the efficacy of the applied methodology for large-scale screening, enabling the exploration of extensive configurational spaces of NaSICONs and other materials for potential use as solid-state electrolytes.
钪取代的NaScZrSiPO钠超离子导体(NaSICONs)已成为全固态钠电池中很有前景的电解质材料。然而,由于这些多元素结构的组成空间巨大,对其进行全面研究具有挑战性,导致迄今为止探索的组成数量有限。在本研究中,我们通过基于密度泛函理论的低成本但高精度的力场分子动力学模拟来研究NaScZrSiPO(0≤≤3;0≤≤2)中的Na迁移率和由此产生的电导率,从而解决了这个问题。我们的研究结果表明,Sc和Si取代基的引入提高了电导率,在中等至高取代度下,室温下的电导率达到10 S/cm。此外,我们的研究证明了所应用方法在大规模筛选中的有效性,能够探索NaSICONs和其他材料作为固态电解质潜在用途的广泛构型空间。