Suppr超能文献

部分区间删失失效时间数据的半参数回归分析及其在 AIDS 临床试验中的应用。

Semiparametric regression analysis of partly interval-censored failure time data with application to an AIDS clinical trial.

机构信息

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA.

Department of Biostatistics, University of Washington, Seattle, Washington, USA.

出版信息

Stat Med. 2021 Sep 10;40(20):4376-4394. doi: 10.1002/sim.9035. Epub 2021 May 26.

Abstract

Failure time data subject to various types of censoring commonly arise in epidemiological and biomedical studies. Motivated by an AIDS clinical trial, we consider regression analysis of failure time data that include exact and left-, interval-, and/or right-censored observations, which are often referred to as partly interval-censored failure time data. We study the effects of potentially time-dependent covariates on partly interval-censored failure time via a class of semiparametric transformation models that includes the widely used proportional hazards model and the proportional odds model as special cases. We propose an EM algorithm for the nonparametric maximum likelihood estimation and show that it unifies some existing approaches developed for traditional right-censored data or purely interval-censored data. In particular, the proposed method reduces to the partial likelihood approach in the case of right-censored data under the proportional hazards model. We establish that the resulting estimator is consistent and asymptotically normal. In addition, we investigate the proposed method via simulation studies and apply it to the motivating AIDS clinical trial.

摘要

失效时间数据通常会受到各种类型的删失的影响,这种情况在流行病学和生物医学研究中很常见。受一项艾滋病临床试验的启发,我们考虑了包括精确删失、左删失、区间删失和/或右删失观察的失效时间数据的回归分析,这些数据通常被称为部分区间删失失效时间数据。我们通过一类半参数变换模型研究了潜在的时变协变量对部分区间删失失效时间的影响,该模型包括广泛使用的比例风险模型和比例优势模型作为特例。我们提出了一种用于非参数最大似然估计的 EM 算法,并证明它统一了一些为传统右删失数据或纯粹区间删失数据开发的现有方法。特别是,在比例风险模型下,对于右删失数据,该方法简化为部分似然方法。我们证明了所得估计量的一致性和渐近正态性。此外,我们通过模拟研究对该方法进行了研究,并将其应用于激励性的艾滋病临床试验。

相似文献

3
Maximum likelihood estimation for semiparametric transformation models with interval-censored data.
Biometrika. 2016 Jun;103(2):253-271. doi: 10.1093/biomet/asw013. Epub 2016 May 24.
4
Cox regression for mixed case interval-censored data with covariate errors.
Lifetime Data Anal. 2012 Jul;18(3):321-38. doi: 10.1007/s10985-012-9220-x. Epub 2012 Mar 24.
5
Semiparametric efficient estimation for additive hazards regression with case II interval-censored survival data.
Lifetime Data Anal. 2020 Oct;26(4):708-730. doi: 10.1007/s10985-020-09496-z. Epub 2020 Mar 10.
6
A semiparametric mixture model approach for regression analysis of partly interval-censored data with a cured subgroup.
Stat Methods Med Res. 2021 Aug;30(8):1890-1903. doi: 10.1177/09622802211023985. Epub 2021 Jul 1.
7
Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data.
Biometrika. 2017 Sep;104(3):505-525. doi: 10.1093/biomet/asx029. Epub 2017 Jul 12.
8
Regression analysis of case K interval-censored failure time data in the presence of informative censoring.
Biometrics. 2016 Dec;72(4):1103-1112. doi: 10.1111/biom.12527. Epub 2016 Apr 28.
9
Marginal proportional hazards models for clustered interval-censored data with time-dependent covariates.
Biometrics. 2023 Sep;79(3):1670-1685. doi: 10.1111/biom.13787. Epub 2022 Dec 1.
10
Semiparametric regression analysis of interval-censored competing risks data.
Biometrics. 2017 Sep;73(3):857-865. doi: 10.1111/biom.12664. Epub 2017 Feb 17.

引用本文的文献

1
Regression analysis of semiparametric Cox-Aalen transformation models with partly interval-censored data.
Electron J Stat. 2025;19(1):240-290. doi: 10.1214/24-ejs2341. Epub 2025 Jan 13.
2
[Parameter estimation using time-dependent Weibull proportional hazards model for survival analysis with partly interval censored data].
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Dec 20;44(12):2461-2468. doi: 10.12122/j.issn.1673-4254.2024.12.23.
3
Bayesian transformation model for spatial partly interval-censored data.
J Appl Stat. 2023 Sep 27;51(11):2139-2156. doi: 10.1080/02664763.2023.2263819. eCollection 2024.
4
A semiparametric Cox-Aalen transformation model with censored data.
Biometrics. 2023 Dec;79(4):3111-3125. doi: 10.1111/biom.13895. Epub 2023 Jul 4.

本文引用的文献

1
Semiparametric Regression Analysis of Multiple Right- and Interval-Censored Events.
J Am Stat Assoc. 2019;114(527):1232-1240. doi: 10.1080/01621459.2018.1482756. Epub 2018 Aug 17.
2
Semiparametric estimation of the accelerated failure time model with partly interval-censored data.
Biometrics. 2017 Dec;73(4):1161-1168. doi: 10.1111/biom.12700. Epub 2017 Apr 25.
3
Maximum likelihood estimation for semiparametric transformation models with interval-censored data.
Biometrika. 2016 Jun;103(2):253-271. doi: 10.1093/biomet/asw013. Epub 2016 May 24.
4
A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data.
Biometrics. 2016 Mar;72(1):222-31. doi: 10.1111/biom.12389. Epub 2015 Sep 22.
5
A multiple imputation approach to the analysis of interval-censored failure time data with the additive hazards model.
Comput Stat Data Anal. 2010 Apr 1;54(4):1109-1116. doi: 10.1016/j.csda.2009.10.022.
6
Generalized log-rank tests for partly interval-censored failure time data.
Biom J. 2008 Jun;50(3):375-85. doi: 10.1002/bimj.200710419.
7
Virologic and regimen termination surrogate end points in AIDS clinical trials.
JAMA. 2001 Feb 14;285(6):777-84. doi: 10.1001/jama.285.6.777.
8
A multiple imputation approach to Cox regression with interval-censored data.
Biometrics. 2000 Mar;56(1):199-203. doi: 10.1111/j.0006-341x.2000.00199.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验