Suppr超能文献

在二氧化碳浓度升高条件下,对豆薯在饱和光子通量密度下光合效率的评估。

Evaluation of photosynthetic efficiency of yam bean ( L.) at saturating photon flux density under elevated carbon dioxide.

作者信息

Ravi Velumani, Pushpaleela Ancy, Raju Saravanan, Gangadharan Byju, More Sanket Jijabrao

机构信息

1Division of Crop Production, ICAR - Central Tuber Crops Research Institute, Sreekariyam P.O., Sreekariyam, Kerala 695 017 India.

2Academy of Climate Change Education and Research, Kerala Agricultural University, Thrissur, Kerala India.

出版信息

Physiol Mol Biol Plants. 2020 Jan;26(1):189-194. doi: 10.1007/s12298-019-00719-8. Epub 2019 Dec 4.

Abstract

The future CO concentration is projected to reach 900-1000 ppm levels by the end of twenty-first century, pertaining to global climatic changes. Consequences of climate change such as changes in mean climatic conditions, increasing extreme weather events, relentless increase in atmospheric CO concentration and increasing pest damage pose serious threats to agricultural productivity. An experiment was planned to assess the response of yam bean to elevated CO, as it is of paramount importance to identify photosynthetically efficient climate-smart crops and varieties to meet future food demand. The net photosynthetic rate ( ), stomatal conductance ( ) and intercellular CO ( ) of yam bean variety, Rajendra Misrikand-1 was recorded under elevated carbon dioxide (400-1000 ppm) and photon flux density (PPFD; 50-2000 μmol m h) at 30 ± 2 °C, 70-80% relative humidity and 0.8-1.2 kPa vapour pressure deficit. The mean rate steadily increased at 200-1000 ppm owing to enhanced intercellular CO. The same trend was observed in the case of intercellular CO. However, contrasting results were recorded with regard to , which steadily decreased at ascending carbon dioxide concentrations. Further, had a significant (< 0.001) linear correlation with the PPFD (R = 0.973). Yam bean was found to be responsive to elevated carbon dioxide as rate at 1000 ppm increased up to 23% relative to 400 ppm.

摘要

预计到21世纪末,由于全球气候变化,未来一氧化碳浓度将达到900-1000ppm水平。气候变化的后果,如平均气候条件的变化、极端天气事件的增加、大气中一氧化碳浓度的持续上升以及病虫害损害的增加,对农业生产力构成了严重威胁。计划进行一项实验,以评估豆薯对高浓度一氧化碳的反应,因为识别光合效率高的适应气候变化的作物和品种对于满足未来粮食需求至关重要。在30±2°C、相对湿度70-80%和蒸汽压亏缺0.8-1.2kPa的条件下,记录了豆薯品种Rajendra Misrikand-1在高浓度二氧化碳(400-1000ppm)和光合光子通量密度(PPFD;50-2000μmol m² h)下的净光合速率( )、气孔导度( )和胞间二氧化碳浓度( )。由于胞间二氧化碳浓度增加,在200-1000ppm时平均 速率稳步增加。胞间二氧化碳浓度也呈现相同趋势。然而,关于 记录到了相反的结果,随着二氧化碳浓度的升高 稳步下降。此外, 与PPFD具有显著(<0.001)线性相关性(R=0.973)。发现豆薯对高浓度二氧化碳有反应,因为在1000ppm时的 速率相对于400ppm增加了23%。

相似文献

1
Evaluation of photosynthetic efficiency of yam bean ( L.) at saturating photon flux density under elevated carbon dioxide.
Physiol Mol Biol Plants. 2020 Jan;26(1):189-194. doi: 10.1007/s12298-019-00719-8. Epub 2019 Dec 4.
2
Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions.
Physiol Mol Biol Plants. 2008 Oct;14(4):299-306. doi: 10.1007/s12298-008-0027-x. Epub 2009 Feb 26.
4
Functional properties of yam bean (Pachyrhizus erosus) starch.
Bioresour Technol. 2003 Aug;89(1):103-6. doi: 10.1016/s0960-8524(02)00313-9.
9
The effect of concurrent elevation in CO2 and temperature on the growth, photosynthesis, and yield of potato crops.
PLoS One. 2020 Oct 21;15(10):e0241081. doi: 10.1371/journal.pone.0241081. eCollection 2020.
10
Effects of elevated ozone and carbon dioxide on the dynamic photosynthesis of Fagus crenata seedlings under variable light conditions.
Sci Total Environ. 2023 Sep 15;891:164398. doi: 10.1016/j.scitotenv.2023.164398. Epub 2023 May 25.

引用本文的文献

1
Leaf Traits Explain the Growth Variation and Nitrogen Response of × and in Mixed Culture.
Plants (Basel). 2024 Mar 29;13(7):988. doi: 10.3390/plants13070988.

本文引用的文献

1
Stomatal conductance of forest species after long-term exposure to elevated CO concentration: a synthesis.
New Phytol. 2001 Feb;149(2):247-264. doi: 10.1046/j.1469-8137.2001.00028.x.
2
Stomatal VPD Response: There Is More to the Story Than ABA.
Plant Physiol. 2018 Jan;176(1):851-864. doi: 10.1104/pp.17.00912. Epub 2017 Oct 6.
3
Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors.
Front Plant Sci. 2016 May 13;7:657. doi: 10.3389/fpls.2016.00657. eCollection 2016.
4
The evolution of mechanisms driving the stomatal response to vapor pressure deficit.
Plant Physiol. 2015 Mar;167(3):833-43. doi: 10.1104/pp.114.252940. Epub 2015 Jan 30.
5
Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.
Plant Cell Environ. 2014 Jan;37(1):132-9. doi: 10.1111/pce.12137. Epub 2013 Jun 20.
7
Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4035-40. doi: 10.1073/pnas.1100371108. Epub 2011 Feb 17.
8
Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO.
Plant Biol (Stuttg). 2009 Nov;11 Suppl 1:76-82. doi: 10.1111/j.1438-8677.2009.00238.x.
9
Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE.
J Exp Bot. 2009;60(10):2859-76. doi: 10.1093/jxb/erp096. Epub 2009 Apr 28.
10
The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions.
Plant Cell Environ. 2007 Mar;30(3):258-270. doi: 10.1111/j.1365-3040.2007.01641.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验