Noma Akiko, Smith Carlas S, Huisman Maximiliaan, Martin Robert M, Moore Melissa J, Grunwald David
RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1600-276 Lisboa, Portugal.
Small Methods. 2018 Sep 11;2(9). doi: 10.1002/smtd.201700324. Epub 2018 May 27.
Single-molecule fluorescence in situ hybridization (smFISH) provides direct access to the spatial relationship between nucleic acids and specific subcellular locations. The ability to precisely localize a messenger RNA can reveal key information about its regulation. Although smFISH is well established in cell culture or thin sections, the utility of smFISH is hindered in thick tissue sections due to the poor probe penetration of fixed tissue, the inaccessibility of target mRNAs for probe hybridization, high background fluorescence, spherical aberration along the optical axis, and the lack of methods for image segmentation of organelles. Studying mRNA localization in 50 μm thick larval muscle sections, these obstacles are overcome using sample-specific optimization of smFISH, particle identification based on maximum likelihood testing, and 3D multiple-organelle segmentation. The latter allows independent thresholds to be assigned to different regions of interest within an image stack. This approach therefore facilitates accurate measurement of mRNA location in thick tissues.
单分子荧光原位杂交(smFISH)可直接揭示核酸与特定亚细胞位置之间的空间关系。精确定位信使核糖核酸(mRNA)的能力能够揭示其调控的关键信息。尽管smFISH在细胞培养或薄切片中已得到广泛应用,但在厚组织切片中,由于固定组织中探针穿透性差、探针难以与目标mRNA杂交、背景荧光高、沿光轴的球差以及缺乏细胞器图像分割方法等原因,smFISH的应用受到了限制。在研究50微米厚的幼虫肌肉切片中的mRNA定位时,通过对smFISH进行样本特异性优化、基于最大似然测试的颗粒识别以及三维多细胞器分割,克服了这些障碍。后者允许在图像堆栈内对不同的感兴趣区域分配独立的阈值。因此,这种方法有助于准确测量厚组织中mRNA的位置。