Suppr超能文献

FindFoci:一种具有自动参数训练功能的焦点检测算法,该算法与人工标注紧密匹配,减少了人工标注的不一致性并提高了分析速度。

FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis.

作者信息

Herbert Alex D, Carr Antony M, Hoffmann Eva

机构信息

MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, United Kingdom.

出版信息

PLoS One. 2014 Dec 5;9(12):e114749. doi: 10.1371/journal.pone.0114749. eCollection 2014.

Abstract

Accurate and reproducible quantification of the accumulation of proteins into foci in cells is essential for data interpretation and for biological inferences. To improve reproducibility, much emphasis has been placed on the preparation of samples, but less attention has been given to reporting and standardizing the quantification of foci. The current standard to quantitate foci in open-source software is to manually determine a range of parameters based on the outcome of one or a few representative images and then apply the parameter combination to the analysis of a larger dataset. Here, we demonstrate the power and utility of using machine learning to train a new algorithm (FindFoci) to determine optimal parameters. FindFoci closely matches human assignments and allows rapid automated exploration of parameter space. Thus, individuals can train the algorithm to mirror their own assignments and then automate focus counting using the same parameters across a large number of images. Using the training algorithm to match human assignments of foci, we demonstrate that applying an optimal parameter combination from a single image is not broadly applicable to analysis of other images scored by the same experimenter or by other experimenters. Our analysis thus reveals wide variation in human assignment of foci and their quantification. To overcome this, we developed training on multiple images, which reduces the inconsistency of using a single or a few images to set parameters for focus detection. FindFoci is provided as an open-source plugin for ImageJ.

摘要

准确且可重复地定量细胞中蛋白质聚集成灶的情况对于数据解读和生物学推断至关重要。为了提高可重复性,人们非常重视样本制备,但对灶点定量的报告和标准化关注较少。当前在开源软件中定量灶点的标准是根据一张或几张代表性图像的结果手动确定一系列参数,然后将该参数组合应用于更大数据集的分析。在此,我们展示了使用机器学习训练一种新算法(FindFoci)来确定最佳参数的能力和实用性。FindFoci与人工赋值非常匹配,并允许快速自动探索参数空间。因此,个人可以训练该算法以反映自己的赋值,然后使用相同参数在大量图像上自动进行灶点计数。通过使用训练算法来匹配人工对灶点的赋值,我们证明从单张图像应用最佳参数组合并不能广泛适用于同一实验者或其他实验者评分的其他图像的分析。因此,我们的分析揭示了人工对灶点的赋值及其定量存在很大差异。为了克服这一点,我们开发了对多张图像的训练,这减少了使用单张或几张图像来设置灶点检测参数的不一致性。FindFoci作为ImageJ的开源插件提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d225/4257716/059bafe72b35/pone.0114749.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验