Suppr超能文献

Wilson-Cowan 网络中的视觉信息流。

Visual information flow in Wilson-Cowan networks.

机构信息

Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

Image Processing Laboratory, Universitat de València, Valencia, Spain.

出版信息

J Neurophysiol. 2020 Jun 1;123(6):2249-2268. doi: 10.1152/jn.00487.2019. Epub 2020 Mar 11.

Abstract

In this paper, we study the communication efficiency of a psychophysically tuned cascade of Wilson-Cowan and divisive normalization layers that simulate the retina-V1 pathway. This is the first analysis of Wilson-Cowan networks in terms of multivariate total correlation. The parameters of the cortical model have been derived through the relation between the steady state of the Wilson-Cowan model and the divisive normalization model. The communication efficiency has been analyzed in two ways: First, we provide an analytical expression for the reduction of the total correlation among the responses of a V1-like population after the application of the Wilson-Cowan interaction. Second, we empirically study the efficiency with visual stimuli and statistical tools that were not available before ) we use a recent, radiometrically calibrated, set of natural scenes, and ) we use a recent technique to estimate the multivariate total correlation in bits from sets of visual responses, which only involves univariate operations, thus giving better estimates of the redundancy. The theoretical and the empirical results show that, although this cascade of layers was not optimized for statistical independence in any way, the redundancy between the responses gets substantially reduced along the neural pathway. Specifically, we show that ) the efficiency of a Wilson-Cowan network is similar to its equivalent divisive normalization model; ) while initial layers (Von Kries adaptation and Weber-like brightness) contribute to univariate equalization, and the bigger contributions to the reduction in total correlation come from the computation of nonlinear local contrast and the application of local oriented filters; and ) psychophysically tuned models are more efficient (reduce more total correlation) in the more populated regions of the luminance-contrast plane. These results are an alternative confirmation of the efficient coding hypothesis for the Wilson-Cowan systems, and, from an applied perspective, they suggest that neural field models could be an option in image coding to perform image compression. The Wilson-Cowan interaction is analyzed in total correlation terms for the first time. Theoretical and empirical results show that this psychophysically tuned interaction achieves the biggest efficiency in the most frequent region of the image space. This is an original confirmation of the efficient coding hypothesis and suggests that neural field models can be an alternative to divisive normalization in image compression.

摘要

在本文中,我们研究了经心理生理调谐的威尔逊-科旺(Wilson-Cowan)级联和可分解归一化层模拟视网膜-V1 通路的通信效率。这是首次从多元总相关的角度对威尔逊-科旺网络进行分析。皮质模型的参数是通过威尔逊-科旺模型的稳态与可分解归一化模型之间的关系得出的。我们通过两种方式分析了通信效率:首先,我们提供了一个分析表达式,用于描述在应用威尔逊-科旺相互作用后,类似 V1 的群体反应之间的总相关的减少。其次,我们使用以前不可用的视觉刺激和统计工具来经验性地研究效率)我们使用了最近的、放射性校准的、一套自然场景,以及)我们使用了一种新的技术,从视觉反应中以位为单位估计多元总相关,该技术只涉及单变量操作,因此可以更好地估计冗余度。理论和实证结果表明,尽管这个层的级联在任何方面都没有针对统计独立性进行优化,但沿神经通路,响应之间的冗余度会大大降低。具体来说,我们表明:)威尔逊-科旺网络的效率与其等效的可分解归一化模型相似;)虽然初始层(冯克里茨适应和韦伯式亮度)有助于单变量均衡,而对总相关减少的较大贡献来自于非线性局部对比度的计算和局部定向滤波器的应用;以及)心理生理调谐模型在亮度-对比度平面的更密集区域效率更高(减少更多的总相关)。这些结果是对威尔逊-科旺系统有效编码假说的另一种验证,从应用的角度来看,它们表明神经场模型可能是图像编码中执行图像压缩的一种选择。威尔逊-科旺相互作用是首次在总相关项中进行分析的。理论和实证结果表明,这种心理生理调谐的相互作用在图像空间的最常见区域实现了最大的效率。这是对有效编码假说的原始验证,并表明神经场模型可以替代图像压缩中的可分解归一化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验