Coen-Cagli Ruben, Schwartz Odelia
Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland.
J Vis. 2013 Jul 15;13(8):13. doi: 10.1167/13.8.13.
The first two areas of the primate visual cortex (V1, V2) provide a paradigmatic example of hierarchical computation in the brain. However, neither the functional properties of V2 nor the interactions between the two areas are well understood. One key aspect is that the statistics of the inputs received by V2 depend on the nonlinear response properties of V1. Here, we focused on divisive normalization, a canonical nonlinear computation that is observed in many neural areas and modalities. We simulated V1 responses with (and without) different forms of surround normalization derived from statistical models of natural scenes, including canonical normalization and a statistically optimal extension that accounted for image nonhomogeneities. The statistics of the V1 population responses differed markedly across models. We then addressed how V2 receptive fields pool the responses of V1 model units with different tuning. We assumed this is achieved by learning without supervision a linear representation that removes correlations, which could be accomplished with principal component analysis. This approach revealed V2-like feature selectivity when we used the optimal normalization and, to a lesser extent, the canonical one but not in the absence of both. We compared the resulting two-stage models on two perceptual tasks; while models encompassing V1 surround normalization performed better at object recognition, only statistically optimal normalization provided systematic advantages in a task more closely matched to midlevel vision, namely figure/ground judgment. Our results suggest that experiments probing midlevel areas might benefit from using stimuli designed to engage the computations that characterize V1 optimality.
灵长类动物视觉皮层的前两个区域(V1、V2)为大脑中的层级计算提供了一个典型示例。然而,V2的功能特性以及这两个区域之间的相互作用都尚未得到充分理解。一个关键方面是,V2接收到的输入的统计特性取决于V1的非线性响应特性。在此,我们聚焦于归一化除法,这是一种在许多神经区域和模态中都能观察到的典型非线性计算。我们用从自然场景统计模型中推导出来的不同形式的周边归一化(包括标准归一化和一种考虑图像非均匀性的统计最优扩展)来模拟(以及不模拟)V1的响应。不同模型之间,V1群体响应的统计特性存在显著差异。然后,我们探讨了V2感受野如何汇聚具有不同调谐的V1模型单元的响应。我们假设这是通过无监督学习一种去除相关性的线性表示来实现的,这可以通过主成分分析来完成。当我们使用最优归一化时,这种方法揭示了类似V2的特征选择性,在一定程度上使用标准归一化时也有此效果,但在两者都不使用时则没有。我们在两项感知任务上比较了由此产生的两阶段模型;虽然包含V1周边归一化的模型在物体识别方面表现更好,但只有统计最优归一化在一项与中级视觉更匹配的任务(即图形/背景判断)中提供了系统性优势。我们的结果表明,探索中级区域的实验可能会受益于使用旨在引发表征V1最优性的计算的刺激。