Suppr超能文献

最终用户参与以改善对具有复杂动态和多种驱动因素的人群的预测和管理。

End-user involvement to improve predictions and management of populations with complex dynamics and multiple drivers.

机构信息

University of Tromsø, The Arctic University, Hansine Hansens veg 18, Tromsø, 9019, Norway.

Norwegian Institute for Nature Research (NINA), Fram Centre, Postboks 6606 Langnes, Tromsø, 9296, Norway.

出版信息

Ecol Appl. 2020 Sep;30(6):e02120. doi: 10.1002/eap.2120. Epub 2020 Apr 15.

Abstract

Sustainable management of wildlife populations can be aided by building models that both identify current drivers of natural dynamics and provide near-term predictions of future states. We employed a Strategic Foresight Protocol (SFP) involving stakeholders to decide the purpose and structure of a dynamic state-space model for the population dynamics of the Willow Ptarmigan, a popular game species in Norway. Based on local knowledge of stakeholders, it was decided that the model should include food web interactions and climatic drivers to provide explanatory predictions. Modeling confirmed observations from stakeholders that climate change impacts Ptarmigan populations negatively through intensified outbreaks of insect defoliators and later onset of winter. Stakeholders also decided that the model should provide anticipatory predictions. The ability to forecast population density ahead of the harvest season was valued by the stakeholders as it provides the management extra time to consider appropriate harvest regulations and communicate with hunters prior to the hunting season. Overall, exploring potential drivers and predicting short-term future states, facilitate collaborative learning and refined data collection, monitoring designs, and management priorities. Our experience from adapting a SFP to a management target with inherently complex dynamics and drivers of environmental change, is that an open, flexible, and iterative process, rather than a rigid step-wise protocol, facilitates rapid learning, trust, and legitimacy.

摘要

可持续的野生动物种群管理可以通过建立模型来辅助,这些模型既可以识别自然动态的当前驱动因素,又可以提供未来状态的短期预测。我们采用了一种战略展望协议(SFP),让利益相关者参与其中,以确定柳雷鸟种群动态的动态状态空间模型的目的和结构,柳雷鸟是挪威一种受欢迎的狩猎物种。根据利益相关者的本地知识,决定模型应包括食物网相互作用和气候驱动因素,以提供解释性预测。建模证实了利益相关者的观察结果,即气候变化通过加剧昆虫食叶动物的爆发和冬季后期的发生,对雷鸟种群产生负面影响。利益相关者还决定,模型应该提供预期预测。在收获季节之前预测种群密度的能力受到利益相关者的重视,因为它为管理层提供了额外的时间来考虑适当的收获规定,并在狩猎季节之前与猎人进行沟通。总的来说,探索潜在的驱动因素和预测短期未来状态,有助于协作学习和改进数据收集、监测设计和管理重点。我们从适应具有内在复杂动态和环境变化驱动因素的管理目标的 SFP 中获得的经验是,开放、灵活和迭代的过程,而不是僵化的逐步协议,有助于快速学习、信任和合法性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验