Suppr超能文献

基于影像组学的脑寡转移瘤立体定向体部放疗后放射性坏死与肿瘤进展鉴别诊断方法

Radiomics Method for the Differential Diagnosis of Radionecrosis Versus Progression after Fractionated Stereotactic Body Radiotherapy for Brain Oligometastasis.

作者信息

Hettal Liza, Stefani Anais, Salleron Julia, Courrech Florent, Behm-Ansmant Isabelle, Constans Jean Marc, Gauchotte Guillaume, Vogin Guillaume

机构信息

CNRS UMR 7365 IMoPA, Université de Lorraine, Biopôle, Vandoeuvre-Lès-Nancy, France.

Département de Radiothérapie, Institut de Cancérologie de Lorraine, Vandoeuvre-Les-Nancy, France.

出版信息

Radiat Res. 2020 May;193(5):471-480. doi: 10.1667/RR15517.1. Epub 2020 Mar 11.

Abstract

Stereotactic radiotherapy (SRT) is recommended for treatment of brain oligometastasis (BoM) in patients with controlled primary disease. Where contrast enhancement enlargement occurs during follow-up, distinguishing between radionecrosis and progression presents a critical challenge. Without pathological confirmation, decision-making may be inappropriate and delayed. Quantitative imaging features extracted from routinely performed examinations are of interest in potentially addressing this problem. We explored the added value of the radiomics method for the differential diagnosis of these two entities. Twenty patients who received SRT for BoM, from any primary location, were included (8 radionecrosis, 12 progressions, pathologically confirmed). We assessed the clinical relevance of 1,766 radiomics features, extracted using IBEX software, from the first T1-weighted postcontrast magnetic resonance imaging (MRI) after SRT showing a lesion modification. We evaluated seven feature-selection methods and 12 classification methods in terms of respective predictive performance. The classification accuracy was measured using Cohen's kappa after leave-one-out cross-validation. In this work, the best predictive power reached was a Cohen's kappa of 0.68 (overall accuracy of 85%), expressing a strong agreement between the algorithm prediction and the histological gold standard. Prediction accuracy was 75% for radionecrosis, and 91% for progression. The area under a curve reached 0.83 using a bagging algorithm trained with the chi-square score features set. These findings indicated that the radiomics method is able to discriminate radionecrosis from progression in an accurate, early and noninvasive way. This promising study is a proof of concept, preceding a larger prospective study for defining a robust model to support decision-making in BoM. In summary, distinguishing between radionecrosis and progression is challenging without pathology. We built a classification model based on imaging data and machine learning. Using this model, we were able predict progression and radionecrosis in, respectively, 91% and 75% of cases.

摘要

对于原发疾病得到控制的脑寡转移瘤(BoM)患者,推荐采用立体定向放射治疗(SRT)。在随访期间若出现对比增强扩大,区分放射性坏死和疾病进展是一项严峻挑战。若无病理证实,决策可能不当且延迟。从常规检查中提取的定量成像特征可能有助于解决这一问题。我们探讨了放射组学方法在这两种情况鉴别诊断中的附加价值。纳入了20例因BoM接受SRT治疗的患者,原发部位不限(8例放射性坏死,12例疾病进展,均经病理证实)。我们使用IBEX软件从SRT后首次T1加权增强磁共振成像(MRI)显示病变改变的图像中提取了1766个放射组学特征,并评估了其临床相关性。我们从各自的预测性能方面评估了七种特征选择方法和十二种分类方法。采用留一法交叉验证后,使用科恩kappa系数测量分类准确性。在这项研究中,达到的最佳预测能力为科恩kappa系数0.68(总体准确率85%),表明算法预测与组织学金标准之间有很强的一致性。放射性坏死的预测准确率为75%,疾病进展的预测准确率为91%。使用基于卡方评分特征集训练的装袋算法,曲线下面积达到0.83。这些发现表明,放射组学方法能够准确、早期且无创地鉴别放射性坏死和疾病进展。这项有前景的研究是一个概念验证,在此之前还需要进行更大规模的前瞻性研究,以定义一个强大的模型来支持BoM的决策制定。总之,在没有病理学检查的情况下,区分放射性坏死和疾病进展具有挑战性。我们基于影像数据和机器学习构建了一个分类模型。使用该模型,我们分别能够在91%和75%的病例中预测疾病进展和放射性坏死。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验