Suppr超能文献

一个简单的模型表明,经济理性的样本量选择驱动了不可再现性。

A simple model suggesting economically rational sample-size choice drives irreproducibility.

机构信息

Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.

出版信息

PLoS One. 2020 Mar 11;15(3):e0229615. doi: 10.1371/journal.pone.0229615. eCollection 2020.

Abstract

Several systematic studies have suggested that a large fraction of published research is not reproducible. One probable reason for low reproducibility is insufficient sample size, resulting in low power and low positive predictive value. It has been suggested that insufficient sample-size choice is driven by a combination of scientific competition and 'positive publication bias'. Here we formalize this intuition in a simple model, in which scientists choose economically rational sample sizes, balancing the cost of experimentation with income from publication. Specifically, assuming that a scientist's income derives only from 'positive' findings (positive publication bias) and that individual samples cost a fixed amount, allows to leverage basic statistical formulas into an economic optimality prediction. We find that if effects have i) low base probability, ii) small effect size or iii) low grant income per publication, then the rational (economically optimal) sample size is small. Furthermore, for plausible distributions of these parameters we find a robust emergence of a bimodal distribution of obtained statistical power and low overall reproducibility rates, both matching empirical findings. Finally, we explore conditional equivalence testing as a means to align economic incentives with adequate sample sizes. Overall, the model describes a simple mechanism explaining both the prevalence and the persistence of small sample sizes, and is well suited for empirical validation. It proposes economic rationality, or economic pressures, as a principal driver of irreproducibility and suggests strategies to change this.

摘要

几项系统研究表明,很大一部分已发表的研究结果是不可复制的。低可重复性的一个可能原因是样本量不足,导致功效和阳性预测值低。有人认为,样本量选择不足是科学竞争和“阳性发表偏倚”共同作用的结果。在这里,我们在一个简单的模型中形式化了这种直觉,在这个模型中,科学家们选择经济上合理的样本量,在实验成本和发表收入之间取得平衡。具体来说,假设科学家的收入仅来自“阳性”发现(阳性发表偏倚),并且单个样本的成本是固定的,这使得我们可以利用基本的统计公式进行经济最优预测。我们发现,如果效应具有 i)低基础概率,ii)小效应大小,或者 iii)低每份出版物的资助收入,那么理性(经济最优)的样本量就很小。此外,对于这些参数的合理分布,我们发现获得的统计功效和整体可重复性的双峰分布都稳健地出现,这两种情况都与经验发现相匹配。最后,我们探索了条件等效性检验作为一种使经济激励与适当的样本量相匹配的方法。总的来说,该模型描述了一个简单的机制,解释了小样本量的普遍性和持久性,并且非常适合经验验证。它提出了经济合理性或经济压力是不可重复性的主要驱动因素,并提出了改变这种情况的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce60/7065751/678f2fea67c9/pone.0229615.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验