Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
Canadian Institute for Advanced Research, Toronto, Canada.
Microbiome. 2020 Mar 11;8(1):33. doi: 10.1186/s40168-020-00806-z.
Human-targeted drugs may exert off-target effects or can be repurposed to modulate the gut microbiota. However, our understanding of such effects is limited due to a lack of rapid and scalable assay to comprehensively assess microbiome responses to drugs. Drugs and other compounds can drastically change the overall abundance, taxonomic composition, and functions of a gut microbiome.
Here, we developed an approach to screen compounds against individual microbiomes in vitro, using metaproteomics to both measure absolute bacterial abundances and to functionally profile the microbiome. Our approach was evaluated by testing 43 compounds (including 4 antibiotics) against 5 individual microbiomes. The method generated technically highly reproducible readouts, including changes of overall microbiome abundance, microbiome composition, and functional pathways. Results show that besides the antibiotics, the compounds berberine and ibuprofen inhibited the accumulation of biomass during in vitro growth of the microbiota. By comparing genus and species level-biomass contributions, selective antibacterial-like activities were found with 35 of the 39 non-antibiotic compounds. Seven of the compounds led to a global alteration of the metaproteome, with apparent compound-specific patterns of functional responses. The taxonomic distributions of altered proteins varied among drugs, i.e., different drugs affect functions of different members of the microbiome. We also showed that bacterial function can shift in response to drugs without a change in the abundance of the bacteria.
Current drug-microbiome interaction studies largely focus on relative microbiome composition and microbial drug metabolism. In contrast, our workflow enables multiple insights into microbiome absolute abundance and functional responses to drugs. The workflow is robust, reproducible, and quantitative and is scalable for personalized high-throughput drug screening applications.
靶向人类的药物可能会产生非靶向效应,或者可以被重新用于调节肠道微生物组。然而,由于缺乏快速和可扩展的检测方法来全面评估药物对微生物组的反应,我们对这些影响的了解是有限的。药物和其他化合物可以极大地改变肠道微生物组的总体丰度、分类组成和功能。
在这里,我们开发了一种在体外筛选针对个体微生物组的化合物的方法,使用代谢蛋白质组学来测量细菌的绝对丰度并对微生物组进行功能分析。我们通过用 5 种不同的微生物组测试 43 种化合物(包括 4 种抗生素)来评估该方法。该方法生成了技术上高度可重复的结果,包括整体微生物组丰度、微生物组组成和功能途径的变化。结果表明,除了抗生素外,化合物小檗碱和布洛芬抑制了微生物组在体外生长过程中生物量的积累。通过比较属和种水平的生物量贡献,发现 39 种非抗生素化合物中有 35 种具有选择性的类似抗生素的活性。其中 7 种化合物导致了代谢蛋白质组的全局改变,出现了明显的化合物特异性功能反应模式。改变的蛋白质的分类分布在药物之间有所不同,即不同的药物会影响微生物组中不同细菌的功能。我们还表明,细菌的功能可以在不改变细菌丰度的情况下响应药物而发生变化。
目前的药物-微生物组相互作用研究主要集中在相对微生物组组成和微生物药物代谢上。相比之下,我们的工作流程能够深入了解微生物组对药物的绝对丰度和功能反应。该工作流程具有稳健性、可重复性和定量性,并且可以扩展到用于个性化高通量药物筛选的应用。