Suppr超能文献

骨髓衰老与血液系统恶性肿瘤的微环境

Bone Marrow Senescence and the Microenvironment of Hematological Malignancies.

作者信息

Hellmich Charlotte, Moore Jamie A, Bowles Kristian M, Rushworth Stuart A

机构信息

Norwich Medical School, University of East Anglia, Norwich, United Kingdom.

Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom.

出版信息

Front Oncol. 2020 Feb 25;10:230. doi: 10.3389/fonc.2020.00230. eCollection 2020.

Abstract

Senescence is the irreversible arrest of cell proliferation that has now been shown to play an important role in both health and disease. With increasing age senescent cells accumulate throughout the body, including the bone marrow and this has been associated with a number of age-related pathologies including malignancies. It has been shown that the senescence associated secretory phenotype (SASP) creates a pro-tumoural environment that supports proliferation and survival of malignant cells. Understanding the role of senescent cells in tumor development better may help us to identify new treatment targets to impair tumor survival and reduce treatment resistance. In this review, we will specifically discuss the role of senescence in the aging bone marrow (BM) microenvironment. Many BM disorders are age-related diseases and highly dependent on the BM microenvironment. Despite advances in drug development the prognosis particularly for older patients remains poor and new treatment approaches are needed to improve outcomes for patients. In this review, we will focus on the relationship of senescence and hematological malignancies, how senescence promotes cancer development and how malignant cells induce senescence.

摘要

细胞衰老指细胞增殖的不可逆停滞,现已证明其在健康和疾病中均发挥重要作用。随着年龄增长,衰老细胞在全身各处积聚,包括骨髓,这与多种与年龄相关的病理状况(包括恶性肿瘤)有关。研究表明,衰老相关分泌表型(SASP)营造了一种促肿瘤环境,支持恶性细胞的增殖和存活。更好地了解衰老细胞在肿瘤发生中的作用,可能有助于我们确定新的治疗靶点,以损害肿瘤存活并降低治疗抗性。在本综述中,我们将具体讨论衰老在衰老骨髓(BM)微环境中的作用。许多BM疾病都是与年龄相关的疾病,且高度依赖于BM微环境。尽管药物研发取得了进展,但尤其是老年患者的预后仍然很差,需要新的治疗方法来改善患者的治疗效果。在本综述中,我们将重点关注衰老与血液系统恶性肿瘤的关系、衰老如何促进癌症发展以及恶性细胞如何诱导衰老。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d20/7052485/dca3117a990b/fonc-10-00230-g0001.jpg

相似文献

1
Bone Marrow Senescence and the Microenvironment of Hematological Malignancies.
Front Oncol. 2020 Feb 25;10:230. doi: 10.3389/fonc.2020.00230. eCollection 2020.
2
Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment.
Blood. 2019 Jan 31;133(5):446-456. doi: 10.1182/blood-2018-04-845420. Epub 2018 Nov 6.
3
Cellular senescence and hematological malignancies: From pathogenesis to therapeutics.
Pharmacol Ther. 2021 Jul;223:107817. doi: 10.1016/j.pharmthera.2021.107817. Epub 2021 Feb 12.
4
Identification of Senescent Cells in the Bone Microenvironment.
J Bone Miner Res. 2016 Nov;31(11):1920-1929. doi: 10.1002/jbmr.2892. Epub 2016 Oct 24.
5
Assessing Functional Roles of the Senescence-Associated Secretory Phenotype (SASP).
Methods Mol Biol. 2019;1896:45-55. doi: 10.1007/978-1-4939-8931-7_6.
6
Exosomes as Emerging Pro-Tumorigenic Mediators of the Senescence-Associated Secretory Phenotype.
Int J Mol Sci. 2019 May 24;20(10):2547. doi: 10.3390/ijms20102547.
7
The Contribution of Physiological and Accelerated Aging to Cancer Progression Through Senescence-Induced Inflammation.
Front Oncol. 2021 Sep 21;11:747822. doi: 10.3389/fonc.2021.747822. eCollection 2021.
8
Aging- and Senescence-associated Changes of Mesenchymal Stromal Cells in Myelodysplastic Syndromes.
Cell Transplant. 2018 May;27(5):754-764. doi: 10.1177/0963689717745890. Epub 2018 Apr 23.
9
Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype.
Exp Gerontol. 2016 Sep;82:39-49. doi: 10.1016/j.exger.2016.05.010. Epub 2016 May 25.
10
Cellular Senescence: A Translational Perspective.
EBioMedicine. 2017 Jul;21:21-28. doi: 10.1016/j.ebiom.2017.04.013. Epub 2017 Apr 12.

引用本文的文献

2
CXCR Family and Hematologic Malignancies in the Bone Marrow Microenvironment.
Biomolecules. 2025 May 13;15(5):716. doi: 10.3390/biom15050716.
4
Cellular polarity pilots breast cancer progression and immunosuppression.
Oncogene. 2025 Apr;44(12):783-793. doi: 10.1038/s41388-025-03324-0. Epub 2025 Mar 8.
5
Senolytic Vaccines from the Central and Peripheral Tolerance Perspective.
Vaccines (Basel). 2024 Dec 10;12(12):1389. doi: 10.3390/vaccines12121389.
6
A View of Myeloid Transformation through the Hallmarks of Cancer.
Blood Cancer Discov. 2024 Nov 1;5(6):377-387. doi: 10.1158/2643-3230.BCD-24-0009.
7
Quantifiable blood TCR repertoire components associate with immune aging.
Nat Commun. 2024 Sep 17;15(1):8171. doi: 10.1038/s41467-024-52522-z.
8
The dual role of cellular senescence in human tumor progression and therapy.
MedComm (2020). 2024 Aug 19;5(9):e695. doi: 10.1002/mco2.695. eCollection 2024 Sep.
9
Automated Bone Marrow Cell Classification for Haematological Disease Diagnosis Using Siamese Neural Network.
Diagnostics (Basel). 2022 Dec 29;13(1):112. doi: 10.3390/diagnostics13010112.

本文引用的文献

2
Cells exhibiting strong promoter activation in vivo display features of senescence.
Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2603-2611. doi: 10.1073/pnas.1818313116. Epub 2019 Jan 25.
3
Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment.
Blood. 2019 Jan 31;133(5):446-456. doi: 10.1182/blood-2018-04-845420. Epub 2018 Nov 6.
4
Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia.
Blood. 2019 Jan 3;133(1):7-17. doi: 10.1182/blood-2018-08-868752. Epub 2018 Oct 25.
6
Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability.
Leukemia. 2019 Feb;33(2):457-468. doi: 10.1038/s41375-018-0206-x. Epub 2018 Jul 25.
7
Senolytics improve physical function and increase lifespan in old age.
Nat Med. 2018 Aug;24(8):1246-1256. doi: 10.1038/s41591-018-0092-9. Epub 2018 Jul 9.
8
Myeloma-derived macrophage inhibitory factor regulates bone marrow stromal cell-derived IL-6 via c-MYC.
J Hematol Oncol. 2018 May 16;11(1):66. doi: 10.1186/s13045-018-0614-4.
10
NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts.
Blood. 2017 Oct 5;130(14):1649-1660. doi: 10.1182/blood-2017-03-772939. Epub 2017 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验