Wang Chan, Shi Duoqi, Li Shaolin
School of Energy and Power Engineering, Beihang University, Beijing 100191, China.
Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191, China.
Materials (Basel). 2020 Mar 10;13(5):1256. doi: 10.3390/ma13051256.
This paper established a microstructure-related hardness model of a polycrystalline Ni-based superalloy GH4720Li, and the sizes and area fractions of γ' precipitates were extracted from scanning electron microscope (SEM) images using a deep learning method. The common method used to obtain morphological parameters of γ' precipitates is the thresholding method. However, this method is not suitable for distinguishing different generations of γ' precipitates with similar gray values in SEM images, which needs many manual interventions. In this paper, we employ SEM with ATLAS (AuTomated Large Area Scanning) module to automatically and quickly detect a much wider range of microstructures. A deep learning method of U-Net is firstly applied to automatically and accurately segment different generations of γ' precipitates and extract their parameters from the large-area SEM images. Then the obtained sizes and area fractions of γ' precipitates are used to study the precipitate stability and microstructure-related hardness of GH4720Li alloy at long-term service temperatures. The experimental results show that primary and secondary γ' precipitates show good stability under long-term service temperatures. Tertiary γ' precipitates coarsen selectively, and their coarsening behavior can be predicted by the Lifshitz-Slyozov encounter modified (LSEM) model. The hardness decreases as a result of γ' coarsening. A microstructure-related hardness model for correlating the hardness of the γ'/γ coherent structures and the microstructure is established, which can effectively predict the hardness of the alloy with different microstructures.
本文建立了一种多晶镍基高温合金GH4720Li的与微观结构相关的硬度模型,并使用深度学习方法从扫描电子显微镜(SEM)图像中提取γ'析出相的尺寸和面积分数。获取γ'析出相形态参数的常用方法是阈值法。然而,该方法不适用于区分SEM图像中具有相似灰度值的不同代γ'析出相,这需要大量人工干预。在本文中,我们采用配备ATLAS(自动大面积扫描)模块的SEM来自动快速检测更广泛的微观结构。首先应用U-Net深度学习方法从大面积SEM图像中自动准确地分割不同代的γ'析出相并提取其参数。然后,将获得的γ'析出相的尺寸和面积分数用于研究GH4720Li合金在长期服役温度下的析出相稳定性和与微观结构相关的硬度。实验结果表明,初生和次生γ'析出相在长期服役温度下表现出良好的稳定性。第三级γ'析出相选择性粗化,其粗化行为可以通过Lifshitz-Slyozov相遇修正(LSEM)模型进行预测。由于γ'粗化,硬度降低。建立了一种用于关联γ'/γ共格结构的硬度与微观结构的与微观结构相关的硬度模型,该模型可以有效地预测具有不同微观结构的合金的硬度。