Suppr超能文献

无浮力的双面微圆柱体作为用于在宽频率范围内连续微流体生物分子收集的移动微电极阵列:数值模拟研究

Buoyancy-Free Janus Microcylinders as Mobile Microelectrode Arrays for Continuous Microfluidic Biomolecule Collection within a Wide Frequency Range: A Numerical Simulation Study.

作者信息

Liu Weiyu, Ren Yukun, Tao Ye, Yan Hui, Xiao Congda, Wu Qisheng

机构信息

School of Electronics and Control Engineering, Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710064, China.

State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, China.

出版信息

Micromachines (Basel). 2020 Mar 10;11(3):289. doi: 10.3390/mi11030289.

Abstract

We numerically study herein the AC electrokinetic motion of Janus mobile microelectrode (ME) arrays in electrolyte solution in a wide field frequency, which holds great potential for biomedical applications. A fully coupled physical model, which incorporates the fluid-structure interaction under the synergy of induced-charge electroosmotic (ICEO) slipping and interfacial Maxwell stress, is developed for this purpose. A freely suspended Janus cylinder free from buoyancy, whose main body is made of polystyrene, while half of the particle surface is coated with a thin conducting film of negligible thickness, will react actively on application of an AC signal. In the low-frequency limit, induced-charge electrophoretic (ICEP) translation occurs due to symmetric breaking in ICEO slipping, which renders the insulating end to move ahead. At higher field frequencies, a brand-new electrokinetic transport phenomenon called "ego-dielectrophoresis (e-DEP)" arises due to the action of the localized uneven field on the inhomogeneous particle dipole moment. In stark contrast with the low-frequency ICEP translation, the high-frequency e-DEP force tends to drive the asymmetric dipole moment to move in the direction of the conducting end. The bidirectional transport feature of Janus microspheres in a wide AC frequency range can be vividly interpreted as an array of ME for continuous loading of secondary bioparticles from the surrounding liquid medium along its direction-controllable path by long-range electroconvection. These results pave the way for achieving flexible and high-throughput on-chip extraction of nanoscale biological contents for subsequent on-site bioassay based upon AC electrokinetics of Janus ME arrays.

摘要

我们在此对电解质溶液中具有生物医学应用巨大潜力的Janus移动微电极(ME)阵列在宽场频率下的交流电动运动进行了数值研究。为此,建立了一个完全耦合的物理模型,该模型在感应电荷电渗(ICEO)滑移和界面麦克斯韦应力的协同作用下纳入了流固相互作用。一个无浮力的自由悬浮Janus圆柱体,其主体由聚苯乙烯制成,而颗粒表面的一半涂有厚度可忽略不计的薄导电膜,在施加交流信号时会产生积极反应。在低频极限下,由于ICEO滑移中的对称破坏,会发生感应电荷电泳(ICEP)平移,这使得绝缘端向前移动。在较高场频率下,由于局部不均匀场对不均匀颗粒偶极矩的作用,会出现一种全新的电动输运现象,称为“自我介电泳(e-DEP)”。与低频ICEP平移形成鲜明对比的是,高频e-DEP力倾向于驱动不对称偶极矩朝着导电端的方向移动。Janus微球在宽交流频率范围内的双向输运特性可以生动地解释为一个ME阵列,用于通过远程电对流沿其方向可控路径从周围液体介质中连续加载二次生物颗粒。这些结果为基于Janus ME阵列的交流电动学实现灵活、高通量的片上纳米级生物内容物提取以进行后续现场生物测定铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e0/7142959/99dbc8971798/micromachines-11-00289-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验