Suppr超能文献

综述:微流控装置中的电场驱动泵浦

Review: Electric field driven pumping in microfluidic device.

作者信息

Hossan Mohammad R, Dutta Diganta, Islam Nazmul, Dutta Prashanta

机构信息

Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK, USA.

Department of Physics, University of Nebraska, Kearney, NE, USA.

出版信息

Electrophoresis. 2018 Mar;39(5-6):702-731. doi: 10.1002/elps.201700375. Epub 2017 Dec 15.

Abstract

Pumping of fluids with precise control is one of the key components in a microfluidic device. The electric field has been used as one of the most popular and efficient nonmechanical pumping mechanism to transport fluids in microchannels from the very early stage of microfluidic technology development. This review presents fundamental physics and theories of the different microscale phenomena that arise due to the application of an electric field in fluids, which can be applied for pumping of fluids in microdevices. Specific mechanisms considered in this report are electroosmosis, AC electroosmosis, AC electrothermal, induced charge electroosmosis, traveling wave dielectrophoresis, and liquid dielectrophoresis. Each phenomenon is discussed systematically with theoretical rigor and role of relevant key parameters are identified for pumping in microdevices. We specifically discussed the electric field driven body force term for each phenomenon using generalized Maxwell stress tensor as well as simplified effective dipole moment based method. Both experimental and theoretical works by several researchers are highlighted in this article for each electric field driven pumping mechanism. The detailed understanding of these phenomena and relevant key parameters are critical for better utilization, modulation, and selection of appropriate phenomenon for efficient pumping in a specific microfluidic application.

摘要

精确控制流体的泵送是微流控装置的关键组成部分之一。自微流控技术发展的早期阶段起,电场就已被用作最常用且高效的非机械泵送机制之一,用于在微通道中输送流体。本综述介绍了由于在流体中施加电场而产生的不同微尺度现象的基本物理原理和理论,这些原理和理论可应用于微器件中的流体泵送。本报告中考虑的具体机制包括电渗、交流电渗、交流电热、感应电荷电渗、行波介电电泳和液体介电电泳。对每种现象进行了系统的严格理论探讨,并确定了在微器件泵送中相关关键参数的作用。我们使用广义麦克斯韦应力张量以及基于简化有效偶极矩的方法,具体讨论了每种现象的电场驱动体力项。本文针对每种电场驱动的泵送机制,突出了几位研究人员的实验和理论工作。对这些现象及相关关键参数的详细理解,对于在特定微流控应用中更好地利用、调节和选择合适的现象以实现高效泵送至关重要。

相似文献

1
Review: Electric field driven pumping in microfluidic device.
Electrophoresis. 2018 Mar;39(5-6):702-731. doi: 10.1002/elps.201700375. Epub 2017 Dec 15.
2
A systematic overview of electrode configuration in electric-driven micropumps.
Electrophoresis. 2022 Jul;43(13-14):1476-1520. doi: 10.1002/elps.202100317. Epub 2022 May 15.
3
Controllable rotating behavior of individual dielectric microrod in a rotating electric field.
Electrophoresis. 2017 Jun;38(11):1427-1433. doi: 10.1002/elps.201600574. Epub 2017 Mar 17.
4
AC Electric Field-Induced Trapping of Microparticles in Pinched Microconfinements.
Langmuir. 2015 Jun 2;31(21):5952-61. doi: 10.1021/la504795m. Epub 2015 May 20.
5
Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
Electrophoresis. 2018 Mar;39(5-6):887-896. doi: 10.1002/elps.201700342. Epub 2017 Nov 14.
7
Theoretical and experimental analysis of negative dielectrophoresis-induced particle trajectories.
Electrophoresis. 2022 Jun;43(12):1366-1377. doi: 10.1002/elps.202100372. Epub 2022 May 15.
8
Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications.
Electrophoresis. 2019 Sep;40(18-19):2484-2513. doi: 10.1002/elps.201900048. Epub 2019 Mar 8.
10
DNA dielectrophoresis: Theory and applications a review.
Electrophoresis. 2017 Jun;38(11):1483-1506. doi: 10.1002/elps.201600482. Epub 2017 Apr 7.

引用本文的文献

1
External electric fields drive the formation of P → C dative bonds.
Chem Sci. 2025 Apr 8;16(19):8542-8554. doi: 10.1039/d5sc01701g. eCollection 2025 May 14.
2
Simple Electroosmotic Pump and Active Microfluidics with Asymmetrically Coated Microelectrodes.
Small Sci. 2023 Jul 9;3(9):2300026. doi: 10.1002/smsc.202300026. eCollection 2023 Sep.
4
Driving Rotational Circulation in a Microfluidic Chamber Using Dual Focused Surface-Acoustic-Wave Beams.
Micromachines (Basel). 2025 Jan 25;16(2):140. doi: 10.3390/mi16020140.
6
Microfluidic-based electrically driven particle manipulation techniques for biomedical applications.
RSC Adv. 2025 Jan 3;15(1):167-198. doi: 10.1039/d4ra05571c. eCollection 2025 Jan 2.
7
Periodic Flows in Microfluidics.
Small. 2024 Dec;20(50):e2404685. doi: 10.1002/smll.202404685. Epub 2024 Sep 9.
8
Electro-Osmotic Flow and Mass Transfer through a Rough Microchannel with a Modulated Charged Surface.
Micromachines (Basel). 2024 Jul 4;15(7):882. doi: 10.3390/mi15070882.
9
An overview of challenges associated with exosomal miRNA isolation toward liquid biopsy-based ovarian cancer detection.
Heliyon. 2024 Apr 25;10(9):e30328. doi: 10.1016/j.heliyon.2024.e30328. eCollection 2024 May 15.
10
Synchronous oscillatory electro-inertial focusing of microparticles.
Biomicrofluidics. 2023 Dec 12;17(6):064105. doi: 10.1063/5.0162368. eCollection 2023 Dec.

本文引用的文献

1
Electrolyte effect in induced charge electroosmosis.
Soft Matter. 2017 Jul 19;13(28):4864-4870. doi: 10.1039/c7sm00787f.
2
AC Electroosmosis-Enhanced Nanoplasmofluidic Detection of Ultralow-Concentration Cytokine.
Nano Lett. 2017 Apr 12;17(4):2374-2380. doi: 10.1021/acs.nanolett.6b05313. Epub 2017 Mar 17.
3
Numerical Study of the Electrothermal Effect on the Kinetic Reaction of Immunoassays for a Microfluidic Biosensor.
Langmuir. 2016 Dec 20;32(50):13305-13312. doi: 10.1021/acs.langmuir.6b02637. Epub 2016 Dec 7.
4
Enhanced model-based design of a high-throughput three dimensional micromixer driven by alternating-current electrothermal flow.
Electrophoresis. 2017 Jan;38(2):258-269. doi: 10.1002/elps.201600106. Epub 2016 Aug 4.
5
Long-range electrothermal fluid motion in microfluidic systems.
Int J Heat Mass Transf. 2016 Jul;98:341-349. doi: 10.1016/j.ijheatmasstransfer.2016.03.034.
6
Electrothermal flow on electrodes arrays at physiological conductivities.
IET Nanobiotechnol. 2016 Apr;10(2):54-61. doi: 10.1049/iet-nbt.2015.0014.
7
Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.
Biomicrofluidics. 2016 Mar 2;10(2):024101. doi: 10.1063/1.4943032. eCollection 2016 Mar.
9
Bi-directional ACET micropump for on-chip biological applications.
Electrophoresis. 2016 Mar;37(5-6):719-26. doi: 10.1002/elps.201500404.
10
AC Electrothermal Circulatory Pumping Chip for Cell Culture.
ACS Appl Mater Interfaces. 2015 Dec 9;7(48):26792-801. doi: 10.1021/acsami.5b08863. Epub 2015 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验