Mendenhall Marcus H, Black David, Cline James P
National Institute of Standards and Technology, Gaithersburg, MD, USA.
J Appl Crystallogr. 2019;52(5). doi: 10.1107/s1600576719010951.
The use of an Incident Beam Monochromator (IBM) in an X-ray powder diffractometer modifies both the shape of the spectrum from the X-ray source, and the relation between the apparent diffracted angle and the actual wavelength of the X-ray. For high-accuracy work, the traditional assumption of a narrow line of typically Gaussian shape does not suffice. Both the shape of the tails of peaks, and their width, can be described by a new model which couples the dispersion from the optic to the dispersion from the powder sample, and to its transport to a detector. This work presents such a model, and demonstrates that it produces excellent fits via the Fundamental Parameter Approach, and requires few free parameters to achieve this. Further, the parameters used are directly relatable to physical characteristics of the diffractometer optics. This agreement is critical for the evaluation of high-precision lattice parameters and crystal microstructural parameters by powder diffraction.
在X射线粉末衍射仪中使用入射光束单色仪(IBM)会改变来自X射线源的光谱形状,以及表观衍射角与X射线实际波长之间的关系。对于高精度工作,传统的通常为高斯形状的窄线假设是不够的。峰尾的形状及其宽度都可以用一个新模型来描述,该模型将光学器件的色散与粉末样品的色散及其传输到探测器的过程耦合起来。这项工作提出了这样一个模型,并证明它通过基本参数法能实现极佳的拟合,且只需很少的自由参数就能做到这一点。此外,所使用的参数与衍射仪光学器件的物理特性直接相关。这种一致性对于通过粉末衍射评估高精度晶格参数和晶体微观结构参数至关重要。