Suppr超能文献

信息价值:贝叶斯证据综合中的敏感性分析与研究设计

Value of Information: Sensitivity Analysis and Research Design in Bayesian Evidence Synthesis.

作者信息

Jackson Christopher, Presanis Anne, Conti Stefano, De Angelis Daniela

机构信息

MRC Biostatistics Unit, University of Cambridge, UK.

NHS England, Leeds, UK.

出版信息

J Am Stat Assoc. 2019 Apr 30;114(528):1436-1449. doi: 10.1080/01621459.2018.1562932. eCollection 2019.

Abstract

Suppose we have a Bayesian model that combines evidence from several different sources. We want to know which model parameters most affect the estimate or decision from the model, or which of the parameter uncertainties drive the decision uncertainty. Furthermore, we want to prioritize what further data should be collected. These questions can be addressed by Value of Information (VoI) analysis, in which we estimate expected reductions in loss from learning specific parameters or collecting data of a given design. We describe the theory and practice of VoI for Bayesian evidence synthesis, using and extending ideas from health economics, computer modeling and Bayesian design. The methods are general to a range of decision problems including point estimation and choices between discrete actions. We apply them to a model for estimating prevalence of HIV infection, combining indirect information from surveys, registers, and expert beliefs. This analysis shows which parameters contribute most of the uncertainty about each prevalence estimate, and the expected improvements in precision from specific amounts of additional data. These benefits can be traded with the costs of sampling to determine an optimal sample size. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

摘要

假设我们有一个贝叶斯模型,它整合了来自几个不同来源的证据。我们想知道哪些模型参数对模型的估计或决策影响最大,或者哪些参数的不确定性导致了决策的不确定性。此外,我们想确定应该优先收集哪些更多的数据。这些问题可以通过信息价值(VoI)分析来解决,在信息价值分析中,我们估计通过了解特定参数或收集给定设计的数据,预期损失会减少多少。我们描述了贝叶斯证据合成中信息价值的理论和实践,运用并扩展了来自卫生经济学、计算机建模和贝叶斯设计的理念。这些方法适用于一系列决策问题,包括点估计和离散行动之间的选择。我们将它们应用于一个估计艾滋病毒感染率的模型,该模型结合了来自调查、登记和专家判断的间接信息。该分析表明了哪些参数对每个感染率估计的不确定性贡献最大,以及特定数量的额外数据在精度上的预期提升。这些益处可以与抽样成本进行权衡,以确定最优样本量。本文的补充材料,包括可用于重现该研究的材料的标准化描述,可作为在线补充资料获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验