Suppr超能文献

对嘈杂环境刺激的自组织学习需要不同的可塑性阶段。

The self-organized learning of noisy environmental stimuli requires distinct phases of plasticity.

作者信息

Krüppel Steffen, Tetzlaff Christian

机构信息

Department of Computational Neuroscience, Third Institute of Physics - Biophysics, Georg-August-University, Göttingen, Germany.

出版信息

Netw Neurosci. 2020 Mar 1;4(1):174-199. doi: 10.1162/netn_a_00118. eCollection 2020.

Abstract

Along sensory pathways, representations of environmental stimuli become increasingly sparse and expanded. If additionally the feed-forward synaptic weights are structured according to the inherent organization of stimuli, the increase in sparseness and expansion leads to a reduction of sensory noise. However, it is unknown how the synapses in the brain form the required structure, especially given the omnipresent noise of environmental stimuli. Here, we employ a combination of synaptic plasticity and intrinsic plasticity-adapting the excitability of each neuron individually-and present stimuli with an inherent organization to a feed-forward network. We observe that intrinsic plasticity maintains the sparseness of the neural code and thereby allows synaptic plasticity to learn the organization of stimuli in low-noise environments. Nevertheless, even high levels of noise can be handled after a subsequent phase of readaptation of the neuronal excitabilities by intrinsic plasticity. Interestingly, during this phase the synaptic structure has to be maintained. These results demonstrate that learning and recalling in the presence of noise requires the coordinated interplay between plasticity mechanisms adapting different properties of the neuronal circuit.

摘要

沿着感觉通路,环境刺激的表征变得越来越稀疏且范围扩大。此外,如果前馈突触权重根据刺激的固有组织进行构建,那么稀疏性的增加和范围的扩大将导致感觉噪声的减少。然而,尚不清楚大脑中的突触如何形成所需的结构,特别是考虑到环境刺激无处不在的噪声。在这里,我们采用突触可塑性和内在可塑性的组合——分别调整每个神经元的兴奋性——并将具有固有组织的刺激呈现给前馈网络。我们观察到,内在可塑性维持了神经编码的稀疏性,从而使突触可塑性能够在低噪声环境中学习刺激的组织。然而,即使在随后通过内在可塑性对神经元兴奋性进行重新调整的阶段之后,高水平的噪声也能够得到处理。有趣的是,在这个阶段,突触结构必须得以维持。这些结果表明,在存在噪声的情况下进行学习和回忆需要调整神经元回路不同属性的可塑性机制之间的协同相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca12/7055647/2dd97456c0bb/netn-04-174-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验