Suppr超能文献

昆虫大脑中一个学习与记忆中心的完整连接组。

The complete connectome of a learning and memory centre in an insect brain.

作者信息

Eichler Katharina, Li Feng, Litwin-Kumar Ashok, Park Youngser, Andrade Ingrid, Schneider-Mizell Casey M, Saumweber Timo, Huser Annina, Eschbach Claire, Gerber Bertram, Fetter Richard D, Truman James W, Priebe Carey E, Abbott L F, Thum Andreas S, Zlatic Marta, Cardona Albert

机构信息

Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA.

Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.

出版信息

Nature. 2017 Aug 9;548(7666):175-182. doi: 10.1038/nature23455.

Abstract

Associating stimuli with positive or negative reinforcement is essential for survival, but a complete wiring diagram of a higher-order circuit supporting associative memory has not been previously available. Here we reconstruct one such circuit at synaptic resolution, the Drosophila larval mushroom body. We find that most Kenyon cells integrate random combinations of inputs but that a subset receives stereotyped inputs from single projection neurons. This organization maximizes performance of a model output neuron on a stimulus discrimination task. We also report a novel canonical circuit in each mushroom body compartment with previously unidentified connections: reciprocal Kenyon cell to modulatory neuron connections, modulatory neuron to output neuron connections, and a surprisingly high number of recurrent connections between Kenyon cells. Stereotyped connections found between output neurons could enhance the selection of learned behaviours. The complete circuit map of the mushroom body should guide future functional studies of this learning and memory centre.

摘要

将刺激与正性或负性强化联系起来对生存至关重要,但此前尚未有支持联想记忆的高阶回路的完整布线图。在此,我们以突触分辨率重建了一个这样的回路,即果蝇幼虫蘑菇体。我们发现,大多数肯扬细胞整合随机组合的输入,但有一个子集接收来自单个投射神经元的刻板输入。这种组织方式使模型输出神经元在刺激辨别任务中的性能最大化。我们还报告了每个蘑菇体区室中一个新的典型回路,其具有先前未识别的连接:肯扬细胞与调节神经元之间的相互连接、调节神经元与输出神经元之间的连接,以及肯扬细胞之间数量惊人的递归连接。在输出神经元之间发现的刻板连接可能会增强对习得行为的选择。蘑菇体的完整电路图应能指导对这个学习和记忆中心未来的功能研究。

相似文献

1
The complete connectome of a learning and memory centre in an insect brain.
Nature. 2017 Aug 9;548(7666):175-182. doi: 10.1038/nature23455.
3
Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells.
Nat Commun. 2019 Jul 15;10(1):3097. doi: 10.1038/s41467-019-11092-1.
4
Random convergence of olfactory inputs in the Drosophila mushroom body.
Nature. 2013 May 2;497(7447):113-7. doi: 10.1038/nature12063. Epub 2013 Apr 24.
5
Circuits for integrating learned and innate valences in the insect brain.
Elife. 2021 Nov 10;10:e62567. doi: 10.7554/eLife.62567.
6
Connectomics and function of a memory network: the mushroom body of larval Drosophila.
Curr Opin Neurobiol. 2019 Feb;54:146-154. doi: 10.1016/j.conb.2018.10.007. Epub 2018 Oct 24.
7
Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in Drosophila.
Curr Biol. 2020 Aug 17;30(16):3200-3211.e8. doi: 10.1016/j.cub.2020.05.077. Epub 2020 Jul 2.
8
Drosophila larvae establish appetitive olfactory memories via mushroom body neurons of embryonic origin.
J Neurosci. 2010 Aug 11;30(32):10655-66. doi: 10.1523/JNEUROSCI.1281-10.2010.
9
A connectome of a learning and memory center in the adult brain.
Elife. 2017 Jul 18;6:e26975. doi: 10.7554/eLife.26975.
10
The insect mushroom body, an experience-dependent recoding device.
J Physiol Paris. 2014 Apr-Jun;108(2-3):84-95. doi: 10.1016/j.jphysparis.2014.07.004. Epub 2014 Aug 1.

引用本文的文献

2
Lateralised memory networks may explain the use of higher-order visual features in navigating insects.
PLoS Comput Biol. 2025 Jun 23;21(6):e1012670. doi: 10.1371/journal.pcbi.1012670. eCollection 2025 Jun.
4
Morphology and ultrastructure of external sense organs of larvae.
Elife. 2025 Jun 16;12:RP91155. doi: 10.7554/eLife.91155.
5
Neural substrates of cold nociception in larva.
Elife. 2025 Jun 13;12:RP91582. doi: 10.7554/eLife.91582.
8
Inhibitory circuit motifs in Drosophila larvae generate motor program diversity and variability.
PLoS Biol. 2025 Apr 21;23(4):e3003094. doi: 10.1371/journal.pbio.3003094. eCollection 2025 Apr.
9
Driver lines for studying associative learning in .
Elife. 2025 Jan 29;13:RP94168. doi: 10.7554/eLife.94168.
10
Development of the brain network control theory and its implications.
Psychoradiology. 2024 Dec 14;4:kkae028. doi: 10.1093/psyrad/kkae028. eCollection 2024.

本文引用的文献

1
Organization of the larval visual circuit.
Elife. 2017 Aug 8;6:e28387. doi: 10.7554/eLife.28387.
2
A connectome of a learning and memory center in the adult brain.
Elife. 2017 Jul 18;6:e26975. doi: 10.7554/eLife.26975.
3
The Olmpiad: concordance of behavioural faculties of stage 1 and stage 3 larvae.
J Exp Biol. 2017 Jul 1;220(Pt 13):2452-2475. doi: 10.1242/jeb.156646.
4
Optimal Degrees of Synaptic Connectivity.
Neuron. 2017 Mar 8;93(5):1153-1164.e7. doi: 10.1016/j.neuron.2017.01.030. Epub 2017 Feb 16.
5
Synaptic transmission parallels neuromodulation in a central food-intake circuit.
Elife. 2016 Nov 15;5:e16799. doi: 10.7554/eLife.16799.
6
Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila.
Cell. 2016 Oct 20;167(3):858-870.e19. doi: 10.1016/j.cell.2016.09.009. Epub 2016 Oct 6.
7
Fine structure of synaptic sites and circuits in mushroom bodies of insect brains.
Arthropod Struct Dev. 2016 Sep;45(5):399-421. doi: 10.1016/j.asd.2016.08.005. Epub 2016 Oct 6.
8
Dopaminergic neurons write and update memories with cell-type-specific rules.
Elife. 2016 Jul 21;5:e16135. doi: 10.7554/eLife.16135.
9
Selective Inhibition Mediates the Sequential Recruitment of Motor Pools.
Neuron. 2016 Aug 3;91(3):615-28. doi: 10.1016/j.neuron.2016.06.031. Epub 2016 Jul 14.
10
NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases.
Neuron. 2016 Jul 20;91(2):293-311. doi: 10.1016/j.neuron.2016.06.012. Epub 2016 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验