Wertz Anthony, Holder Andre L, Guillame-Bert Mathieu, Clermont Gilles, Dubrawski Artur, Pinsky Michael R
Auton Lab, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.
Cardiopulmonary Research Laboratory, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA.
Crit Care Explor. 2019 Oct 30;1(10):e0058. doi: 10.1097/CCE.0000000000000058. eCollection 2019 Oct.
We hypothesize that knowledge of a stable personalized baseline state and increased data sampling frequency would markedly improve the ability to detect progressive hypovolemia during hemorrhage earlier and with a lower false positive rate than when using less granular data.
Prospective temporal challenge.
Large animal research laboratory, University Medical Center.
Fifty-one anesthetized Yorkshire pigs.
Pigs were instrumented with arterial, pulmonary arterial, and central venous catheters and allowed to stabilize for 30 minutes then bled at a constant rate of either 5 mL·min ( = 13) or 20 ( = 38) until mean arterial pressure decreased to 40 or 30 mm Hg in the 5 and 20 mL·min pigs, respectively.
Data during the stabilization period served as baseline. Hemodynamic variables collected at 250 Hz were used to create predictive models of "bleeding" using featurized beat-to-beat and waveform data and compared with models using mean unfeaturized hemodynamic variables averaged over 1-minute as simple hemodynamic metrics using random forest classifiers to identify bleeding with or without baseline data. The robustness of the prediction was evaluated in a leave-one-pig-out cross-validation. Predictive performance of models was compared by their activity monitoring operating characteristic and receiver operating characteristic profiles. Primary hemodynamic threshold data poorly identified bleed onset unless very stable initial baseline reference data were available. When referenced to baseline, bleed detection at a false positive rates of 10 with time to detect 80% of pigs bleeding was similar for simple hemodynamic metrics, beat-to-beat, and waveform at about 3-4 minutes. Whereas when universally baselined, increasing sampling frequency reduced latency of bleed detection from 10 to 8 to 6 minutes, for simple hemodynamic metrics, beat-to-beat, and waveform, respectively. Some informative features differed between simple hemodynamic metrics, beat-to-beat, and waveform models.
Knowledge of personal stable baseline data allows for early detection of new-onset bleeding, whereas if no personal baseline exists increasing sampling frequency of hemodynamic monitoring data improves bleeding detection earlier and with lower false positive rate.
我们假设,了解稳定的个性化基线状态并提高数据采样频率,将显著提高在出血期间比使用粒度较小的数据更早检测进行性血容量不足的能力,且假阳性率更低。
前瞻性时间挑战。
大学医学中心的大型动物研究实验室。
51只麻醉的约克夏猪。
给猪插入动脉、肺动脉和中心静脉导管,使其稳定30分钟,然后分别以5 mL·min(n = 13)或20 mL·min(n = 38)的恒定速率放血,直到5 mL·min组和20 mL·min组的平均动脉压分别降至40或30 mmHg。
稳定期的数据用作基线。以250 Hz采集的血流动力学变量用于创建“出血”的预测模型,使用特征化的逐搏和波形数据,并与使用平均未特征化血流动力学变量(在1分钟内平均)作为简单血流动力学指标的模型进行比较,使用随机森林分类器识别有无基线数据时的出血情况。在留一猪交叉验证中评估预测的稳健性。通过活动监测操作特征和接受者操作特征曲线比较模型的预测性能。除非有非常稳定的初始基线参考数据,否则主要血流动力学阈值数据很难识别出血开始。当以基线为参考时,简单血流动力学指标、逐搏和波形在约3 - 4分钟时以10%的假阳性率检测到80%的猪出血的情况相似。而当普遍以基线为标准时,对于简单血流动力学指标、逐搏和波形,增加采样频率分别将出血检测的延迟从10分钟减少到8分钟再到6分钟。简单血流动力学指标、逐搏和波形模型之间的一些信息性特征有所不同。
了解个人稳定的基线数据有助于早期检测新发出血,而如果不存在个人基线,增加血流动力学监测数据的采样频率可更早检测出血,且假阳性率更低。