Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany.
Department of Medicine, University of California, San Francisco, CA, USA.
Clin Pharmacokinet. 2020 Sep;59(9):1119-1134. doi: 10.1007/s40262-020-00880-4.
Nicotine, the pharmacologically active substance in both tobacco and many electronic cigarette (e-cigarette) liquids, is responsible for the addiction that sustains cigarette smoking. With 8 million deaths worldwide annually, smoking remains one of the major causes of disability and premature death. However, nicotine also plays an important role in smoking cessation strategies.
The aim of this study was to develop a comprehensive, whole-body, physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model of nicotine and its major metabolite cotinine, covering various routes of nicotine administration, and to simulate nicotine brain tissue concentrations after the use of combustible cigarettes, e-cigarettes, nicotine gums, and nicotine patches.
A parent-metabolite, PBPK/PD model of nicotine for a non-smoking and a smoking population was developed using 91 plasma and brain tissue concentration-time profiles and 11 heart rate profiles. Among others, cytochrome P450 (CYP) 2A6 and 2B6 enzymes were implemented, including kinetics for CYP2A6 poor metabolizers.
The model is able to precisely describe and predict both nicotine plasma and brain tissue concentrations, cotinine plasma concentrations, and heart rate profiles. 100% of the predicted area under the concentration-time curve (AUC) and maximum concentration (C) values meet the twofold acceptance criterion with overall geometric mean fold errors of 1.12 and 1.15, respectively. The administration of combustible cigarettes, e-cigarettes, nicotine patches, and nicotine gums was successfully implemented in the model and used to identify differences in steady-state nicotine brain tissue concentration patterns.
Our PBPK/PD model may be helpful in further investigations of nicotine dependence and smoking cessation strategies. As the model represents the first nicotine PBPK/PD model predicting nicotine concentration and heart rate profiles after the use of e-cigarettes, it could also contribute to a better understanding of the recent increase in youth e-cigarette use.
尼古丁是烟草和许多电子烟液中具有药理活性的物质,是维持吸烟成瘾的罪魁祸首。全世界每年有 800 万人因此死亡,吸烟仍然是导致残疾和早逝的主要原因之一。然而,尼古丁在戒烟策略中也起着重要作用。
本研究旨在开发一个全面的、全身性的、基于生理学的尼古丁及其主要代谢物可替宁的药代动力学/药效学(PBPK/PD)模型,涵盖各种尼古丁给药途径,并模拟使用可燃香烟、电子烟、尼古丁咀嚼胶和尼古丁贴片后的尼古丁脑组织浓度。
使用 91 个血浆和脑组织浓度-时间曲线和 11 个心率曲线,为非吸烟和吸烟人群开发了尼古丁的子母代谢物 PBPK/PD 模型。其中包括细胞色素 P450(CYP)2A6 和 2B6 酶,包括 CYP2A6 代谢不良者的动力学。
该模型能够精确描述和预测尼古丁的血浆和脑组织浓度、可替宁的血浆浓度和心率曲线。100%的预测浓度-时间曲线下面积(AUC)和最大浓度(C)值符合两倍接受标准,总体几何均数误差分别为 1.12 和 1.15。成功地在模型中实施了可燃香烟、电子烟、尼古丁贴片和尼古丁咀嚼胶的给药,并用于确定稳态尼古丁脑组织浓度模式的差异。
我们的 PBPK/PD 模型可能有助于进一步研究尼古丁依赖和戒烟策略。由于该模型代表了第一个预测使用电子烟后尼古丁浓度和心率曲线的尼古丁 PBPK/PD 模型,它也有助于更好地理解最近青少年电子烟使用的增加。