Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
Research Service, VA Loma Linda Healthcare System, Loma Linda, CA, USA.
J Assoc Res Otolaryngol. 2020 Apr;21(2):151-170. doi: 10.1007/s10162-020-00747-2. Epub 2020 Mar 12.
The cochlea's wave-based signal processing allows it to efficiently decompose a complex acoustic waveform into frequency components. Because cochlear responses are nonlinear, the waves arising from one frequency component of a complex sound can be altered by the presence of others that overlap with it in time and space (e.g., two-tone suppression). Here, we investigate the suppression of basilar-membrane (BM) velocity responses to a transient signal (a test click) by another click or tone. We show that the BM response to the click can be reduced when the stimulus is shortly preceded or followed by another (suppressor) click. More surprisingly, the data reveal two curious dependencies on the interclick interval, Δt. First, the temporal suppression curve (amount of suppression vs. Δt) manifests a pronounced and nearly periodic microstructure. Second, temporal suppression is generally strongest not when the two clicks are presented simultaneously (Δt = 0), but when the suppressor click precedes the test click by a time interval corresponding to one to two periods of the best frequency (BF) at the measurement location. By systematically varying the phase of the suppressor click, we demonstrate that the suppression microstructure arises from alternating constructive and destructive interference between the BM responses to the two clicks. And by comparing temporal and tonal suppression in the same animals, we test the hypothesis that the asymmetry of the temporal-suppression curve around Δt = 0 stems from cochlear dispersion and the well-known asymmetry of tonal suppression around the BF. Just as for two-tone suppression, BM responses to clicks are most suppressed by tones at frequencies just above the BF of the measurement location. On average, the frequency place of maximal suppressibility of the click response predicted from temporal-suppression data agrees with the frequency at which tonal suppression peaks, consistent with our hypothesis.
耳蜗的基于波的信号处理使其能够有效地将复杂的声波分解为频率分量。由于耳蜗反应是非线性的,因此来自复杂声音的一个频率分量的波可以被与其在时间和空间上重叠的其他波(例如,两音抑制)改变。在这里,我们研究了基底膜(BM)速度响应对瞬态信号(测试点击)的另一个点击或音的抑制。我们表明,当刺激紧随其后或紧随其后时,BM 对点击的响应可以减少另一个(抑制器)点击。更令人惊讶的是,数据揭示了两个有趣的对点击间间隔 Δt 的依赖性。首先,时间抑制曲线(抑制量与 Δt 的关系)表现出明显的几乎周期性的微观结构。其次,当两个点击同时呈现时(Δt = 0),而不是当抑制器点击比测试点击提前一个或两个测量位置的最佳频率(BF)周期对应的时间间隔时,时间抑制通常不是最强的。通过系统地改变抑制器点击的相位,我们证明了抑制微观结构是由两个点击的 BM 响应之间的交替的建设性和破坏性干涉引起的。并且通过在相同的动物中比较时间和音调抑制,我们检验了这样的假设,即围绕 Δt = 0 的时间抑制曲线的不对称性源自于耳蜗的分散性和音调抑制在 BF 周围的众所周知的不对称性。就像两音抑制一样,BM 对点击的响应在稍高于测量位置 BF 的频率处被音调抑制最大。平均而言,从时间抑制数据预测的点击响应的最大抑制频率与音调抑制峰值的频率一致,这与我们的假设一致。