Aswendt Markus, Pallast Niklas, Wieters Frederique, Baues Mayan, Hoehn Mathias, Fink Gereon R
Department of Neurology, Faculty of Medicine, University of Cologne and University Hospital Cologne, Kerpener Strasse, 62 50937, Cologne, Germany.
Cognitive Neuroscience, Research Center Juelich, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany.
Transl Stroke Res. 2021 Feb;12(1):87-97. doi: 10.1007/s12975-020-00802-3. Epub 2020 Mar 12.
Brain lesions caused by cerebral ischemia or hemorrhage lead to a local breakdown of energy homeostasis followed by irreversible cell death and long-term impairment. Importantly, local brain lesions also generate remote functional and structural disturbances, which contribute to the behavioral deficit but also impact the recovery of function. While spontaneous recovery has been associated with endogenous repair mechanisms at the vascular, neural, and immune cell levels, the impact of structural plasticity on sensory-motor dysfunction and recovery thereof remains to be elucidated by longitudinal imaging in a mouse model. Here, we applied behavioral assessments, in vivo fiber tracking, and histological validation in a photothrombotic stroke mouse model. Atlas-based whole-brain structural connectivity analysis and ex vivo histology revealed secondary neurodegeneration in the ipsilesional brain areas, mostly in the dorsal sensorimotor area of the thalamus. Furthermore, we describe for the first time a lesion size-dependent increase in structural connectivity between the contralesional primary motor cortex and thalamus with the ipsilesional cortex. The involvement of the contralesional hemisphere was associated with improved functional recovery relative to lesion size. This study highlights the importance of in vivo fiber tracking and the role of the contralesional hemisphere during spontaneous functional improvement as a potential novel stroke biomarker and therapeutic targets.
由脑缺血或出血引起的脑损伤会导致局部能量稳态破坏,随后出现不可逆的细胞死亡和长期功能障碍。重要的是,局部脑损伤还会引发远程功能和结构紊乱,这不仅会导致行为缺陷,还会影响功能恢复。虽然自发恢复与血管、神经和免疫细胞水平的内源性修复机制有关,但结构可塑性对感觉运动功能障碍及其恢复的影响仍有待在小鼠模型中通过纵向成像来阐明。在此,我们在光血栓性中风小鼠模型中进行了行为评估、体内纤维追踪和组织学验证。基于图谱的全脑结构连通性分析和离体组织学显示,同侧脑区出现继发性神经退行性变,主要位于丘脑的背侧感觉运动区。此外,我们首次描述了对侧初级运动皮层和丘脑与同侧皮层之间的结构连通性随损伤大小而增加。相对于损伤大小,对侧半球的参与与功能恢复改善有关。本研究强调了体内纤维追踪的重要性以及对侧半球在自发功能改善过程中的作用,作为潜在的新型中风生物标志物和治疗靶点。