IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2531-2542. doi: 10.1109/TUFFC.2020.2979481. Epub 2020 Nov 24.
Tracking the myotendinous junction (MTJ) in consecutive ultrasound images is crucial for understanding the mechanics and pathological conditions of the muscle-tendon unit. However, the lack of reliable and efficient identification of MTJ due to poor image quality and boundary ambiguity restricts its application in motion analysis. In recent years, with the rapid development of deep learning, the region-based convolution neural network (RCNN) has shown great potential in the field of simultaneous objection detection and instance segmentation in medical images. This article proposes a region-adaptive network (RAN) to localize MTJ region and to segment it in a single shot. Our model learns about the salient information of MTJ with the help of a composite architecture. Herein, a region-based multitask learning network explores the region containing MTJ, while a parallel end-to-end U-shaped path extracts the MTJ structure from the adaptively selected region for combating data imbalance and boundary ambiguity. By demonstrating the ultrasound images of the gastrocnemius, we showed that the RAN achieves superior segmentation performance when compared with the state-of-the-art Mask RCNN method with an average Dice score of 80.1%. Our proposed method is robust and reliable for advanced muscle and tendon function examinations obtained by ultrasound imaging.
在连续的超声图像中跟踪肌肌腱连接点 (MTJ) 对于理解肌肉肌腱单元的力学和病理状况至关重要。然而,由于图像质量差和边界模糊,缺乏可靠和有效的 MTJ 识别方法,限制了其在运动分析中的应用。近年来,随着深度学习的快速发展,基于区域的卷积神经网络 (RCNN) 在医学图像中的同时目标检测和实例分割领域显示出巨大的潜力。本文提出了一种区域自适应网络 (RAN) 来实现 MTJ 区域的定位和单次分割。我们的模型借助组合架构学习 MTJ 的显著信息。在此,基于区域的多任务学习网络探索包含 MTJ 的区域,而并行的端到端 U 形路径则从自适应选择的区域中提取 MTJ 结构,以解决数据不平衡和边界模糊的问题。通过展示比目鱼肌的超声图像,我们表明 RAN 与最先进的 Mask RCNN 方法相比,具有更好的分割性能,平均 Dice 分数为 80.1%。我们的方法对于通过超声成像获得的先进的肌肉和肌腱功能检查是稳健和可靠的。