Suppr超能文献

应用深度学习对肱二头肌肌腱周围滑液性渗出的超声成像进行分级炎症严重程度评估。

Using Deep Learning in Ultrasound Imaging of Bicipital Peritendinous Effusion to Grade Inflammation Severity.

出版信息

IEEE J Biomed Health Inform. 2020 Apr;24(4):1037-1045. doi: 10.1109/JBHI.2020.2968815. Epub 2020 Jan 22.

Abstract

Inflammation of the long head of the biceps tendon is a common cause of shoulder pain. Bicipital peritendinous effusion (BPE) is the most common biceps tendon abnormality and is related to various shoulder injuries. Physicians usually use ultrasound imaging to grade the inflammation severity of the long head of the biceps tendon. However, obtaining a clear and accurate ultrasound image is difficult for inexperienced attending physicians. To reduce physicians' workload and avoid errors, an automated BPE recognition system was developed in this article for classifying inflammation into the following categories-normal and mild, moderate, and severe. An ultrasound image serves as the input in the proposed system; the system determines whether the ultrasound image contains biceps. If the image depicts biceps, then the system predicts BPE severity. In this study, two crucial methods were used for solving problems associated with computer-aided detection. First, the faster regions with convolutional neural network (faster R-CNN) used to extract the region of interest (ROI) area identification to evaluate the influence of dataset scale and spatial image context on performance. Second, various CNN architectures were evaluated and explored. Model performance was analyzed by using various network configurations, parameters, and training sample sizes. The proposed system was used for three-class BPE classification and achieved 75% accuracy. The results obtained for the proposed system were determined to be comparable to those of other related state-of-the-art methods.

摘要

肱二头肌长头肌腱炎是引起肩部疼痛的常见原因。肱二头肌腱旁积液(BPE)是最常见的肱二头肌肌腱异常,与各种肩部损伤有关。医生通常使用超声成像来分级肱二头肌长头肌腱的炎症严重程度。然而,对于经验不足的主治医生来说,获得清晰准确的超声图像是困难的。为了减轻医生的工作量并避免错误,本文开发了一种自动 BPE 识别系统,用于将炎症分为正常和轻度、中度和重度。超声图像作为输入提供给提出的系统;系统确定超声图像是否包含肱二头肌。如果图像描绘了肱二头肌,则系统预测 BPE 严重程度。在这项研究中,使用了两种关键方法来解决与计算机辅助检测相关的问题。首先,使用更快的区域卷积神经网络(faster R-CNN)提取感兴趣区域(ROI)区域识别,以评估数据集规模和空间图像上下文对性能的影响。其次,评估和探索了各种 CNN 架构。通过使用各种网络配置、参数和训练样本大小来分析模型性能。所提出的系统用于三分类 BPE 分类,准确率达到 75%。确定所提出系统的结果可与其他相关最先进方法的结果相媲美。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验