Suppr超能文献

基于自监督学习的掩码建模超声图像分类

Masked Modeling-Based Ultrasound Image Classification via Self-Supervised Learning.

作者信息

Xu Kele, You Kang, Zhu Boqing, Feng Ming, Feng Dawei, Yang Cheng

机构信息

National University of Defense Technology Changsha 410073 China.

Shanghai Jiao Tong University Shanghai 200240 China.

出版信息

IEEE Open J Eng Med Biol. 2024 Mar 12;5:226-237. doi: 10.1109/OJEMB.2024.3374966. eCollection 2024.

Abstract

Recently, deep learning-based methods have emerged as the preferred approach for ultrasound data analysis. However, these methods often require large-scale annotated datasets for training deep models, which are not readily available in practical scenarios. Additionally, the presence of speckle noise and other imaging artifacts can introduce numerous hard examples for ultrasound data classification. In this paper, drawing inspiration from self-supervised learning techniques, we present a pre-training method based on mask modeling specifically designed for ultrasound data. Our study investigates three different mask modeling strategies: random masking, vertical masking, and horizontal masking. By employing these strategies, our pre-training approach aims to predict the masked portion of the ultrasound images. Notably, our method does not rely on externally labeled data, allowing us to extract representative features without the need for human annotation. Consequently, we can leverage unlabeled datasets for pre-training. Furthermore, to address the challenges posed by hard samples in ultrasound data, we propose a novel hard sample mining strategy. To evaluate the effectiveness of our proposed method, we conduct experiments on two datasets. The experimental results demonstrate that our approach outperforms other state-of-the-art methods in ultrasound image classification. This indicates the superiority of our pre-training method and its ability to extract discriminative features from ultrasound data, even in the presence of hard examples.

摘要

最近,基于深度学习的方法已成为超声数据分析的首选方法。然而,这些方法通常需要大规模的标注数据集来训练深度模型,而在实际场景中这些数据集并不容易获得。此外,斑点噪声和其他成像伪影的存在会给超声数据分类带来大量困难样本。在本文中,受自监督学习技术的启发,我们提出了一种专门为超声数据设计的基于掩码建模的预训练方法。我们的研究探讨了三种不同的掩码建模策略:随机掩码、垂直掩码和水平掩码。通过采用这些策略,我们的预训练方法旨在预测超声图像的掩码部分。值得注意的是,我们的方法不依赖外部标注数据,使我们能够在无需人工标注的情况下提取代表性特征。因此,我们可以利用未标注数据集进行预训练。此外,为了解决超声数据中困难样本带来的挑战,我们提出了一种新颖的困难样本挖掘策略。为了评估我们提出的方法的有效性,我们在两个数据集上进行了实验。实验结果表明,我们的方法在超声图像分类方面优于其他现有先进方法。这表明我们的预训练方法具有优越性,并且即使在存在困难样本的情况下也能够从超声数据中提取有区分力的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8895/11008806/c90cbb5e86b1/zhu1-3374966.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验