Suppr超能文献

基于序列集成学习的图像去噪

Image Denoising via Sequential Ensemble Learning.

作者信息

Yang Xuhui, Xu Yong, Quan Yuhui, Ji Hui

出版信息

IEEE Trans Image Process. 2020 Mar 11. doi: 10.1109/TIP.2020.2978645.

Abstract

Image denoising is about removing measurement noise from input image for better signal-to-noise ratio. In recent years, there has been great progress on the development of data-driven approaches for image denoising, which introduce various techniques and paradigms from machine learning in the design of image denoisers. This paper aims at investigating the application of ensemble learning in image denoising, which combines a set of simple base denoisers to form a more effective image denoiser. Based on different types of image priors, two types of base denoisers in the form of transform-shrinkage are proposed for constructing the ensemble. Then, with an effective re-sampling scheme, several ensemble-learning-based image denoisers are constructed using different sequential combinations of multiple proposed base denoisers. The experiments showed that sequential ensemble learning can effectively boost the performance of image denoising.

摘要

图像去噪旨在从输入图像中去除测量噪声,以获得更好的信噪比。近年来,数据驱动的图像去噪方法取得了很大进展,这些方法在图像去噪器的设计中引入了机器学习的各种技术和范式。本文旨在研究集成学习在图像去噪中的应用,该方法将一组简单的基本去噪器组合起来,形成一个更有效的图像去噪器。基于不同类型的图像先验,提出了两种变换收缩形式的基本去噪器来构建集成。然后,通过有效的重采样方案,使用多个提出的基本去噪器的不同顺序组合构建了几种基于集成学习的图像去噪器。实验表明,顺序集成学习可以有效地提高图像去噪的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验