Suppr超能文献

利用深度学习网络揭示视网膜感受野的精细结构

Revealing Fine Structures of the Retinal Receptive Field by Deep-Learning Networks.

作者信息

Yan Qi, Zheng Yajing, Jia Shanshan, Zhang Yichen, Yu Zhaofei, Chen Feng, Tian Yonghong, Huang Tiejun, Liu Jian K

出版信息

IEEE Trans Cybern. 2022 Jan;52(1):39-50. doi: 10.1109/TCYB.2020.2972983. Epub 2022 Jan 11.

Abstract

Deep convolutional neural networks (CNNs) have demonstrated impressive performance on many visual tasks. Recently, they became useful models for the visual system in neuroscience. However, it is still not clear what is learned by CNNs in terms of neuronal circuits. When a deep CNN with many layers is used for the visual system, it is not easy to compare the structure components of CNNs with possible neuroscience underpinnings due to highly complex circuits from the retina to the higher visual cortex. Here, we address this issue by focusing on single retinal ganglion cells with biophysical models and recording data from animals. By training CNNs with white noise images to predict neuronal responses, we found that fine structures of the retinal receptive field can be revealed. Specifically, convolutional filters learned are resembling biological components of the retinal circuit. This suggests that a CNN learning from one single retinal cell reveals a minimal neural network carried out in this cell. Furthermore, when CNNs learned from different cells are transferred between cells, there is a diversity of transfer learning performance, which indicates that CNNs are cell specific. Moreover, when CNNs are transferred between different types of input images, here white noise versus natural images, transfer learning shows a good performance, which implies that CNNs indeed capture the full computational ability of a single retinal cell for different inputs. Taken together, these results suggest that CNNs could be used to reveal structure components of neuronal circuits, and provide a powerful model for neural system identification.

摘要

深度卷积神经网络(CNN)在许多视觉任务中都展现出了令人瞩目的性能。最近,它们成为了神经科学中视觉系统的有用模型。然而,就神经元回路而言,CNN学到了什么仍然不清楚。当将具有多层的深度CNN用于视觉系统时,由于从视网膜到高级视觉皮层的电路高度复杂,因此很难将CNN的结构组件与可能的神经科学基础进行比较。在这里,我们通过关注具有生物物理模型的单个视网膜神经节细胞并记录动物数据来解决这个问题。通过用白噪声图像训练CNN来预测神经元反应,我们发现可以揭示视网膜感受野的精细结构。具体来说,学到的卷积滤波器类似于视网膜回路的生物组件。这表明从单个视网膜细胞学习的CNN揭示了该细胞中执行的最小神经网络。此外,当从不同细胞学习的CNN在细胞之间转移时,转移学习性能存在差异,这表明CNN是细胞特异性的。而且,当CNN在不同类型的输入图像(这里是白噪声与自然图像)之间转移时,转移学习表现出良好的性能,这意味着CNN确实捕捉到了单个视网膜细胞对不同输入的全部计算能力。综上所述,这些结果表明CNN可用于揭示神经元回路的结构组件,并为神经系统识别提供一个强大的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验