Suppr超能文献

基于广义卷积神经网络的椎体压缩性骨折自动识别的可行性:曼尼托巴骨密度登记处研究。

Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: The Manitoba Bone Mineral Density Registry.

机构信息

Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.

Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada.

出版信息

Bone. 2021 Sep;150:116017. doi: 10.1016/j.bone.2021.116017. Epub 2021 May 19.

Abstract

BACKGROUND

Vertebral fracture assessment (VFA) images are acquired in dual-energy (DE) or single-energy (SE) scan modes. Automated identification of vertebral compression fractures, from VFA images acquired using GE Healthcare scanners in DE mode, has achieved high accuracy through the use of convolutional neural networks (CNNs). Due to differences between DE and SE images, it is uncertain whether CNNs trained on one scan mode will generalize to the other.

PURPOSE

To evaluate the ability of CNNs to generalize between GE DE and GE SE VFA scan modes.

METHODS

12,742 GE VFA images from the Manitoba Bone Mineral Density Program, obtained between 2010 and 2017, were exported in both DE and SE modes. VFAs were classified by imaging specialists as fracture present or absent using the modified algorithm-based qualitative (mABQ) method. VFA scans were randomly divided into independent training (60%), validation (10%), and test (30%) sets. Three CNN models were constructed by training separately on DE only, SE only, and a composite dataset comprised of both SE and DE VFAs. All three trained CNN models were separately evaluated against both SE and DE test datasets.

RESULTS

Good performance was seen for CNNs trained and evaluated on the same scan mode. DE scans used for both training and evaluation (DE/DE) achieved 87.9% sensitivity, 87.4% specificity, and an area under the receiver operating characteristic curve (AUC) of 0.94. SE scans used for both training and evaluation (SE/SE) achieved 78.6% sensitivity, 90.6% specificity, AUC = 0.92. Conversely, CNNs performed poorly when evaluated on scan modes that differed from their training sets (AUC = 0.58). However, a composite CNN trained simultaneously on both SE and DE VFAs gave performance comparable to DE/DE (82.4% sensitivity, 94.3% specificity, AUC = 0.95); and provided improved performance over SE/SE (82.2% sensitivity, 92.3% specificity, AUC = 0.94). Positive predictive value was higher with the composite CNN compared with models trained solely on DE (74.5% vs. 58.7%) or SE VFAs (68.6% vs. 62.9%).

CONCLUSION

CNNs for vertebral fracture identification are highly sensitive to scan mode. Training CNNs on a composite dataset, comprised of both GE DE and GE SE VFAs, allows CNNs to generalize to both scan modes and may facilitate the development of manufacturer-independent machine learning models for vertebral fracture detection.

摘要

背景

椎体骨折评估 (VFA) 图像可通过双能 (DE) 或单能 (SE) 扫描模式获取。通过使用卷积神经网络 (CNN),从使用通用电气医疗保健扫描仪以 DE 模式获取的 VFA 图像中,自动识别椎体压缩性骨折已达到很高的准确性。由于 DE 和 SE 图像之间存在差异,因此尚不确定经过一种扫描模式训练的 CNN 是否可以推广到另一种扫描模式。

目的

评估 CNN 在通用电气 DE 和通用电气 SE VFA 扫描模式之间推广的能力。

方法

从 2010 年至 2017 年,从马尼托巴省骨密度计划中导出了 12742 张通用电气 VFA 图像,这些图像以 DE 和 SE 两种模式导出。使用改良基于算法的定性 (mABQ) 方法,由成像专家将 VFA 分类为存在或不存在骨折。VFA 扫描随机分为独立的训练 (60%)、验证 (10%) 和测试 (30%) 集。通过仅在 DE 上、仅在 SE 上以及在由 SE 和 DE VFA 组成的组合数据集上分别训练,构建了三个 CNN 模型。将所有三个训练有素的 CNN 模型分别针对 SE 和 DE 测试数据集进行评估。

结果

在相同扫描模式下进行训练和评估的 CNN 表现良好。用于培训和评估的 DE 扫描 (DE/DE) 获得了 87.9%的灵敏度、87.4%的特异性和 0.94 的接收器工作特征曲线 (AUC)。用于培训和评估的 SE 扫描 (SE/SE) 获得了 78.6%的灵敏度、90.6%的特异性和 AUC=0.92。相反,当在与训练集不同的扫描模式下进行评估时,CNN 的性能较差 (AUC=0.58)。但是,同时在 SE 和 DE VFA 上训练的组合 CNN 提供了与 DE/DE 相当的性能 (82.4%的灵敏度、94.3%的特异性、AUC=0.95);并且与仅在 SE 上训练的模型相比,其性能有所提高 (82.2%的灵敏度、92.3%的特异性、AUC=0.94)。与仅在 DE (74.5%比 58.7%)或 SE VFA (68.6%比 62.9%)上训练的模型相比,复合 CNN 的阳性预测值更高。

结论

用于椎体骨折识别的 CNN 对扫描模式非常敏感。通过在由通用电气 DE 和通用电气 SE VFA 组成的组合数据集中对 CNN 进行训练,可以使 CNN 推广到两种扫描模式,并可能有助于开发用于椎体骨折检测的制造商独立的机器学习模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验