From the Department of Anesthesiology (M.A.C., B.M.L., T.V., A.J.D., A.B., D.E.L., N.G., S.L.), Center for Safety, Simulation & Advanced Learning Technologies (A.J.D., A.B., D.E.L., N.G., S.L.), Office of Educational Affairs/Office of Medical Education (A.J.D., S.L.), Clinical & Translational Science Institute Simulation Core (D.E.L., S.L.), University of Florida, Gainesville, FL.
Simul Healthc. 2020 Jun;15(3):154-159. doi: 10.1097/SIH.0000000000000419.
Postdural puncture headache due to accidental dural puncture is a consequence of excessive needle tip overshoot distance after entering the epidural space via a loss of resistance (LOR) technique. We are not aware of any quantitative comparison of the magnitude of needle tip overshoot (distance traveled by the needle tip beyond the point where LOR can be discerned) for the various LOR assessment techniques that are taught. Such a comparison may provide insight into contributing factors of accidental dural puncture and associated postdural puncture headache.
A custom-built simulator was used to evaluate the following 3 LOR assessment techniques: incremental needle advancement, intermittent LOR assessment (II); continuous needle advancement, high-frequency intermittent LOR assessment (CI); and continuous needle advancement, continuous LOR assessment (CC).
There were significant mean differences in maximum overshoot past a virtual LOR plane due to technique (F(2,124) = 79.31, P < 0.001) (Fig. 2). Specifically, maximum overshoot was greater with technique II [mean = 3.8 mm, 95% confidence interval (CI) = 3.4-4.3] versus either CC (mean = 1.9 mm, 95% CI = 1.5-1.8, P < 0.001) or CI (mean = 1.4 mm, 95% CI = 0.9-2.3, P < 0.001). Differences in maximum overshoot between CC and CI were not statistically different (P = 0.996). Maximum overshoot was greater at 4 cm (mean = 3.0 mm, 95% CI = 2.6-3.4) compared with 5 cm (mean = 2.3 mm, 95% CI = 2.0-2.5, P = 0.044), 6 cm (mean = 2.0 mm, 95% CI = 1.9-2.2, P = 0.054), 7 cm (mean = 1.9 mm, 95% CI = 1.7-2.1, P = 0.002), and 8 cm (mean = 1.8 mm, 95% CI = 1.6-2.1, P = 0.001). In addition, maximum overshoot at 5 cm was greater than that at 7 cm (P = 0.020) and 8 cm (P = 0.037). The other LOR depths were not statistically significantly different from each other. Depth did not have a significant interaction with technique (P = 0.517). Technique preference had neither a significant relationship to maximum overshoot (P = 0.588) nor a significant interaction with LOR assessment technique (P = 0.689).
Technique II LOR assessment produced the greatest needle overshoot past the simulated LOR plane after obtaining LOR. This was consistent across all LOR depths. In this bench study, the II technique resulted in the deepest needle tip maximum overshoot. We are in the process of designing a clinical study to collect similar data in patients.
由于意外刺破硬脊膜而导致的硬脊膜后穿刺头痛是由于在通过阻力丧失(LOR)技术进入硬膜外腔后,针尖超过了过大的距离。我们不知道任何对各种LOR 评估技术的针尖超出(针尖超过可以识别的 LOR 点的距离)的幅度进行定量比较。这种比较可以深入了解意外刺破硬脊膜和相关的硬脊膜后穿刺头痛的相关因素。
使用定制的模拟器评估以下 3 种 LOR 评估技术:渐进式针推进、间歇性 LOR 评估(II);连续针推进、高频间歇性 LOR 评估(CI);连续针推进、连续 LOR 评估(CC)。
由于技术的原因,在虚拟 LOR 平面之后的最大针尖超出存在显著的均值差异(F(2,124)= 79.31,P < 0.001)(图 2)。具体来说,与 CC 相比,技术 II 时的最大针尖超出更大[平均值=3.8 毫米,95%置信区间(CI)=3.4-4.3](P < 0.001),或 CI 时的最大针尖超出更大[平均值=1.4 毫米,95%CI=0.9-2.3,P < 0.001]。CC 和 CI 之间的最大针尖超出差异没有统计学意义(P = 0.996)。与 5 厘米(平均值=2.3 毫米,95%CI=2.0-2.5,P = 0.044)、6 厘米(平均值=2.0 毫米,95%CI=1.9-2.2,P = 0.054)、7 厘米(平均值=2.0 毫米,95%CI=1.7-2.1,P = 0.002)和 8 厘米(平均值=1.8 毫米,95%CI=1.6-2.1,P = 0.001)相比,4 厘米时的最大针尖超出更大(平均值=3.0 毫米,95%CI=2.6-3.4,P = 0.044)。此外,5 厘米时的最大针尖超出大于 7 厘米(P = 0.020)和 8 厘米(P = 0.037)。其他 LOR 深度彼此之间没有统计学上的显著差异。深度与技术之间没有显著的相互作用(P = 0.517)。技术偏好与最大针尖超出既没有显著的关系(P = 0.588),也没有与 LOR 评估技术显著的相互作用(P = 0.689)。
在获得 LOR 后,II 技术的 LOR 评估产生了最大的针尖超出模拟 LOR 平面。这在所有 LOR 深度中都是一致的。在这项基础研究中,II 技术导致了针尖最大超出的最大深度。我们正在设计一项临床研究,以在患者中收集类似的数据。