RWTH Aachen University, Institut für Biologie II, Abt. Zoologie und Humanbiologie, Worringerweg 3, 52056, Aachen, Germany.
BMC Dev Biol. 2020 Mar 13;20(1):5. doi: 10.1186/s12861-020-00210-8.
Bioelectrical signals are known to be involved in the generation of cell and tissue polarity as well as in cytoskeletal dynamics. The epithelium of Drosophila ovarian follicles is a suitable model system for studying connections between electrochemical gradients, patterns of cytoskeletal elements and axial polarity. By interactions between soma and germline cells, the transforming growth factor-α homolog Gurken (Grk) establishes both the anteroposterior and the dorsoventral axis during oogenesis.
In the follicular epithelium of the wild-type (wt) and the polarity mutant grk, we analysed stage-specific gradients of membrane potentials (V) and intracellular pH (pH) using the potentiometric dye DiBAC(3) and the fluorescent pH-indicator 5-CFDA,AM, respectively. In addition, we compared the cytoskeletal organisation in the follicular epithelium of wt and grk using fluorescent phalloidin and an antibody against acetylated α-tubulin. Corresponding to impaired polarity in grk, the slope of the anteroposterior V-gradient in stage S9 is significantly reduced compared to wt. Even more striking differences in V- and pH-patterns become obvious during stage S10B, when the respective dorsoventral gradients are established in wt but not in grk. Concurrent with bioelectrical differences, wt and grk exhibit differences concerning cytoskeletal patterns in the follicular epithelium. During all vitellogenic stages, basal microfilaments in grk are characterised by transversal alignment, while wt-typical condensations in centripetal follicle cells (S9) and in dorsal centripetal follicle cells (S10B) are absent. Moreover, in grk, longitudinal alignment of microtubules occurs throughout vitellogenesis in all follicle cells, whereas in wt, microtubules in mainbody and posterior follicle cells exhibit a more cell-autonomous organisation. Therefore, in contrast to wt, the follicular epithelium in grk is characterised by missing or shallower electrochemical gradients and by more coordinated transcellular cytoskeletal patterns.
Our results show that bioelectrical polarity and cytoskeletal polarity are closely linked to axial polarity in both wt and grk. When primary polarity signals are altered, both bioelectrical and cytoskeletal patterns in the follicular epithelium change. We propose that not only cell-specific levels of V and pH, or the polarities of transcellular electrochemical gradients, but also the slopes of these gradients are crucial for cytoskeletal modifications and, thus, for proper development of epithelial polarity.
生物电化学信号被认为参与了细胞和组织极性的产生以及细胞骨架动力学。果蝇卵巢滤泡的上皮是研究电化学梯度、细胞骨架元素模式和轴向极性之间联系的合适模型系统。通过体细胞和生殖细胞之间的相互作用,转化生长因子-α同源物 Gurken(Grk)在卵子发生过程中建立了前后轴和背腹轴。
在野生型(wt)和极性突变体 grk 的滤泡上皮中,我们分别使用膜电位(V)和细胞内 pH(pH)的电化学梯度分析阶段特异性梯度,使用电位染料 DiBAC(3)和荧光 pH 指示剂 5-CFDA,AM。此外,我们使用荧光鬼笔环肽和抗乙酰化α-微管蛋白抗体比较了 wt 和 grk 滤泡上皮中的细胞骨架组织。与 grk 中极性受损相对应,S9 期前后 V 梯度的斜率明显低于 wt。在 S10B 期,当各自的背腹梯度在 wt 中建立而在 grk 中没有建立时,V 和 pH 模式的差异更加明显。与生物电差异同时发生的是,wt 和 grk 在滤泡上皮中的细胞骨架模式存在差异。在所有卵黄发生阶段,grk 中的基底微丝以横向排列为特征,而 wt 典型的中心滤泡细胞(S9)和背向中心滤泡细胞(S10B)的浓缩物则不存在。此外,在 grk 中,微管在所有滤泡细胞中贯穿卵黄发生期呈纵向排列,而在 wt 中,主体和后滤泡细胞中的微管表现出更自主的组织。因此,与 wt 相比,grk 中的滤泡上皮的特征是缺少或较浅的电化学梯度以及更协调的细胞间细胞骨架模式。
我们的结果表明,生物电化学极性和细胞骨架极性与 wt 和 grk 中的轴向极性密切相关。当初级极性信号发生改变时,滤泡上皮中的生物电和细胞骨架模式都会发生变化。我们提出,不仅是细胞特异性的 V 和 pH 水平,或者跨细胞电化学梯度的极性,梯度的斜率对于细胞骨架的修饰以及上皮极性的正确发育也是至关重要的。