Allen Discovery Center at Tufts, USA.
Allen Discovery Center at Tufts, USA; Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA.
Prog Biophys Mol Biol. 2018 Sep;137:52-68. doi: 10.1016/j.pbiomolbio.2018.03.008. Epub 2018 Apr 5.
Positional information describes pre-patterns of morphogenetic substances that alter spatio-temporal gene expression to instruct development of growth and form. A wealth of recent data indicate bioelectrical properties, such as the transmembrane potential (V), are involved as instructive signals in the spatiotemporal regulation of morphogenesis. However, the mechanistic relationships between V and molecular positional information are only beginning to be understood. Recent advances in computational modeling are assisting in the development of comprehensive frameworks for mechanistically understanding how endogenous bioelectricity can guide anatomy in a broad range of systems. V represents an extraordinarily strong electric field (∼1.0 × 10 V/m) active over the thin expanse of the plasma membrane, with the capacity to influence a variety of downstream molecular signaling cascades. Moreover, in multicellular networks, intercellular coupling facilitated by gap junction channels may induce directed, electrodiffusive transport of charged molecules between cells of the network to generate new positional information patterning possibilities and characteristics. Given the demonstrated role of V in morphogenesis, here we review current understanding of how V can integrate with molecular regulatory networks to control single cell state, and the unique properties bioelectricity adds to transport phenomena in gap junction-coupled cell networks to facilitate self-assembly of morphogen gradients and other patterns. Understanding how V integrates with biochemical regulatory networks at the level of a single cell, and mechanisms through which V shapes molecular positional information in multicellular networks, are essential for a deep understanding of body plan control in development, regeneration and disease.
位置信息描述了形态发生物质的预模式,这些物质改变时空基因表达,以指导生长和形态的形成。大量最近的数据表明,生物电学特性,如跨膜电位(V),作为指导信号参与形态发生的时空调节。然而,V 与分子位置信息之间的机械关系才刚刚开始被理解。计算建模的最新进展正在协助开发全面的框架,以机械地理解内源性生物电如何在广泛的系统中指导解剖结构。V 代表了一种极其强大的电场(∼1.0×10V/m),在等离子膜的薄区域内活跃,具有影响各种下游分子信号级联的能力。此外,在多细胞网络中,间隙连接通道介导的细胞间耦合可能诱导带电分子在网络细胞之间的定向电扩散运输,从而产生新的位置信息模式化可能性和特征。鉴于 V 在形态发生中的作用已得到证实,在这里我们回顾当前对 V 如何与分子调节网络整合以控制单个细胞状态的理解,以及生物电在间隙连接耦合细胞网络中的运输现象中增加的独特性质,以促进形态发生梯度和其他模式的自组装。理解 V 如何在单个细胞水平上与生化调节网络整合,以及 V 如何在多细胞网络中塑造分子位置信息的机制,对于深入理解发育、再生和疾病中的身体计划控制至关重要。