Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109.
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109.
Plant Cell. 2020 May;32(5):1749-1767. doi: 10.1105/tpc.19.00637. Epub 2020 Mar 13.
In plants, changes in cell size and shape during development fundamentally depend on the ability to synthesize and modify cell wall polysaccharides. The main classes of cell wall polysaccharides produced by terrestrial plants are cellulose, hemicelluloses, and pectins. Members of the cellulose synthase (CESA) and cellulose synthase-like (CSL) families encode glycosyltransferases that synthesize the β-1,4-linked glycan backbones of cellulose and most hemicellulosic polysaccharides that comprise plant cell walls. Cellulose microfibrils are the major load-bearing component in plant cell walls and are assembled from individual β-1,4-glucan polymers synthesized by CESA proteins that are organized into multimeric complexes called CESA complexes, in the plant plasma membrane. During distinct modes of polarized cell wall deposition, such as in the tip growth that occurs during the formation of root hairs and pollen tubes or de novo formation of cell plates during plant cytokinesis, newly synthesized cell wall polysaccharides are deposited in a restricted region of the cell. These processes require the activity of members of the CESA-like D subfamily. However, while these CSLD polysaccharide synthases are essential, the nature of the polysaccharides they synthesize has remained elusive. Here, we use a combination of genetic rescue experiments with CSLD-CESA chimeric proteins, in vitro biochemical reconstitution, and supporting computational modeling and simulation, to demonstrate that Arabidopsis () CSLD3 is a UDP-glucose-dependent β-1,4-glucan synthase that forms protein complexes displaying similar ultrastructural features to those formed by CESA6.
在植物中,细胞大小和形状的发育变化从根本上取决于合成和修饰细胞壁多糖的能力。陆地植物产生的细胞壁多糖主要有纤维素、半纤维素和果胶。纤维素合酶(CESA)和纤维素合酶样(CSL)家族的成员编码糖基转移酶,合成纤维素和大多数半纤维素多糖的β-1,4 连接聚糖主链,这些多糖构成植物细胞壁。纤维素微纤丝是植物细胞壁的主要承重成分,由 CESA 蛋白合成的单个β-1,4-葡聚糖聚合物组装而成,这些蛋白组织成称为 CESA 复合物的多聚体复合物,位于植物质膜中。在特定的极化细胞壁沉积模式中,例如在根毛和花粉管形成过程中的顶端生长,或在植物胞质分裂期间新形成的细胞板,新合成的细胞壁多糖被沉积在细胞的一个受限区域。这些过程需要 CESA 样 D 亚家族成员的活性。然而,尽管这些 CSLD 多糖合酶是必不可少的,但它们合成的多糖的性质仍然难以捉摸。在这里,我们使用 CSLD-CESA 嵌合蛋白的遗传拯救实验、体外生化重建以及支持的计算建模和模拟相结合的方法,证明拟南芥()CSLD3 是一种 UDP-葡萄糖依赖性β-1,4-葡聚糖合酶,它形成的蛋白复合物具有与 CESA6 形成的蛋白复合物相似的超微结构特征。