Suppr超能文献

利用深度学习整合微阵列和临床数据对非小细胞肺癌进行总体生存预测。

Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning.

机构信息

Department of Chemistry, Chinese Culture University, Taipei, 11114, Taiwan.

Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.

出版信息

Sci Rep. 2020 Mar 13;10(1):4679. doi: 10.1038/s41598-020-61588-w.

Abstract

Non-small cell lung cancer (NSCLC) is one of the most common lung cancers worldwide. Accurate prognostic stratification of NSCLC can become an important clinical reference when designing therapeutic strategies for cancer patients. With this clinical application in mind, we developed a deep neural network (DNN) combining heterogeneous data sources of gene expression and clinical data to accurately predict the overall survival of NSCLC patients. Based on microarray data from a cohort set (614 patients), seven well-known NSCLC biomarkers were used to group patients into biomarker- and biomarker+ subgroups. Then, by using a systems biology approach, prognosis relevance values (PRV) were then calculated to select eight additional novel prognostic gene biomarkers. Finally, the combined 15 biomarkers along with clinical data were then used to develop an integrative DNN via bimodal learning to predict the 5-year survival status of NSCLC patients with tremendously high accuracy (AUC: 0.8163, accuracy: 75.44%). Using the capability of deep learning, we believe that our prediction can be a promising index that helps oncologists and physicians develop personalized therapy and build the foundation of precision medicine in the future.

摘要

非小细胞肺癌(NSCLC)是全球最常见的肺癌之一。对 NSCLC 进行准确的预后分层,可以为癌症患者的治疗策略设计提供重要的临床参考。考虑到这一临床应用,我们开发了一种深度神经网络(DNN),结合基因表达和临床数据的异质数据源,以准确预测 NSCLC 患者的总生存期。基于来自队列集(614 例患者)的微阵列数据,使用七种著名的 NSCLC 生物标志物将患者分为生物标志物阳性和生物标志物阴性亚组。然后,通过使用系统生物学方法,计算预后相关性值(PRV)以选择另外八个新的预后基因生物标志物。最后,将这 15 个联合生物标志物与临床数据一起用于通过双模态学习开发一个综合的 DNN,以非常高的准确度(AUC:0.8163,准确度:75.44%)预测 NSCLC 患者的 5 年生存状态。利用深度学习的能力,我们相信我们的预测可以成为一个有前途的指标,帮助肿瘤学家和医生制定个性化的治疗方案,并为未来的精准医学奠定基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验