Zhang Xinran, Liu Jia, Zhou Wen, Lu Junfei, Wu Liqin, Li Yan, Wang Yiyuan, Wang Zhichao, Cai Jun
Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, China.
Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.
Transl Lung Cancer Res. 2025 Aug 31;14(8):3196-3215. doi: 10.21037/tlcr-2025-187. Epub 2025 Aug 21.
Non-small cell lung cancer (NSCLC), a major form of pulmonary malignancy and a leading global cause of cancer-related mortality, highlights the urgent need for advanced precision treatment approaches. This article comprehensively reviews the significant progress and future directions of deep learning techniques in revolutionizing the precise diagnosis and therapeutic management of NSCLC. It demonstrates how deep learning methods have the potential to surpass traditional tumor treatment paradigms, significantly enhancing diagnostic accuracy, personalizing treatment selection, and predicting patient outcomes with greater precision. The article traces the evolution of deep learning models in this field, from basic analyses relying on single data modalities, such as imaging or genomics alone, to more sophisticated architectures capable of multimodal data fusion. It emphasizes the crucial role of integrating radiological, pathological, genomic, and clinical data in uncovering deeper biological insights. Furthermore, it outlines the typical workflow involved in developing and deploying deep learning applications for NSCLC and lists some currently used models, including convolutional neural networks for image analysis and complex architectures for multi-omics data integration. These models show considerable potential for improving diagnostic accuracy and optimizing therapeutic interventions. However, translating these computational tools into routine clinical practice faces several challenges. The review candidly addresses key issues, including the need for large-scale, high-quality, and standardized datasets; the "black box" nature of complex models, which requires improved interpretability to gain clinicians' trust and provide actionable insights; and profound ethical considerations regarding data privacy, algorithmic bias, and equitable access. Despite these obstacles, deep learning has emerged as a powerful instrument in the oncological arsenal, significantly enhancing the precision and efficiency of NSCLC care. Finally, the article offers a dialectical perspective on the future of deep learning in NSCLC, exploring emerging trends and providing recommendations to overcome current limitations, with the goal of maximizing its potential to improve patient survival and quality of life.
非小细胞肺癌(NSCLC)是肺部恶性肿瘤的主要形式,也是全球癌症相关死亡的主要原因,凸显了对先进精准治疗方法的迫切需求。本文全面回顾了深度学习技术在革新NSCLC精准诊断和治疗管理方面取得的重大进展及未来方向。它展示了深度学习方法如何有可能超越传统肿瘤治疗模式,显著提高诊断准确性、个性化治疗选择,并更精确地预测患者预后。文章追溯了该领域深度学习模型的发展历程,从仅依赖单一数据模式(如图像或基因组学)的基础分析,到能够进行多模态数据融合的更复杂架构。它强调了整合放射学、病理学、基因组学和临床数据在揭示更深层次生物学见解方面的关键作用。此外,它概述了开发和部署用于NSCLC的深度学习应用所涉及的典型工作流程,并列出了一些当前使用的模型,包括用于图像分析的卷积神经网络和用于多组学数据整合的复杂架构。这些模型在提高诊断准确性和优化治疗干预方面显示出巨大潜力。然而,将这些计算工具转化为常规临床实践面临若干挑战。该综述坦率地探讨了关键问题,包括对大规模、高质量和标准化数据集的需求;复杂模型的“黑箱”性质,这需要提高可解释性以获得临床医生的信任并提供可操作的见解;以及关于数据隐私、算法偏差和公平获取的深刻伦理考量。尽管存在这些障碍,深度学习已成为肿瘤学武器库中的强大工具,显著提高了NSCLC治疗的精准度和效率。最后,本文对NSCLC深度学习的未来提供了辩证的观点,探讨新兴趋势并提出克服当前局限性的建议,目标是最大限度地发挥其改善患者生存和生活质量的潜力。